
A MARSHALL CAVENDISH 5 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol 1 	 No 5

BASIC PROGRAMMING 9

WHAT DO I DO NEXT? 	 129

Different ways for you to give the computer instructions
during the course of a program

APPLICATIONS 4

Sir OUT YOUR EXPE

A simple accounting program to help you to keep track of
your income and expenditure

GAMES PROGRAMMING 5

DEADLY ENEMIES AND ALIENS 	 144 I
In this new game, the techniques of enemies that shoot back
— and how to avoid getting hit

BASIC PROGRAMMING 10

The techniques of handling large amounts of closely-related
information

MACHINE CODE 6

HANDLING HEXADECIMAL ARITHMETIC 15,1

Making it easier to cope with the way computers do their
arithmetic

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front Cover, Dave King. Pages 129,130,134, Peter Bentley. Pages 136,138,
140, Graeme Harris. Page 142, Graeme Harris, David Lloyd. Pages 144,146,
148,150, Ian Craig. Pages 152,154, Dick Ward. Page 156, Dave King. Pages
158,160, Dave King.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IR£5.45) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Gordon and Gotch
Ltd, PO Box 213, Alexandria, NSW
2015
New Zealand: See inserts for details,
or write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from
local newsagents.

BACK NUMBERS
Copies of any part of INPUT can be obtained from the following addresses at the
regular cover price, with no extra charge for postage and packing:
UK and Republic of Ireland:

INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent

COPIES BY POST
Our Subscription Department can supply your copies direct to you regularly at £1.00
each. For example the cost of 26 issues is £26.00; for any other quantity simply
multiply the number of issues required by £1.00. These rates apply anywhere in the
world. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques orpostal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries — and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V 5PA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K,
48K,128, and and + ∎•' COMMODORE 64 and 128

El ACORN ELECTRON, -414.1
BBC B and B+ - DRAGON 32 and 64

D(81 	 VIC 20 T 1C.OLtIlY1R COMPUTER

■ USING INPUTS AND PROMPTS
■ QUICKER METHODS WITH

INKEY$ OR GET$
■ SCREEN DRAWING PROGRAM
■ PASSWORD PROGRAM

Before you can get a computer to
respond to your wishes, you'll have
to tell it what those wishes are. The
way to do this is fundamental to
many types of program

With very few exceptions, computers do not
just tick along by themselves, giving out
information. Nearly all programs, from
games to business and scientific applications,
require some sort of input from the user. But
there are different types of information which
can be given to the computer, and there are a
number of ways in which this can be done in
different•types of program.

The information may be as simple as
pressing a cursor key to direct a missile base.
Or it may be keying in numbers or text—say
for a quiz, database, accounts program or
scientific calculation. In the case of a game the
main necessity is that the computer reacts

fast. But in other applications, the ability to
change what you have keyed in, before com-
mitting it to the computer's memory, is more
important.

SIMPLE INPUTS
One of the first programs that everyone
writes, which illustrates the use of INPUT, is
along the lines of:

MaIgK
10 PRINT "WHAT IS YOUR NAME?"
20 INPUT N$
30 PRINT "HELLO D";N$
When the computer comes across the INPUT
statement it waits for you to key something in.
In most cases, everything which is typed in,
up to the next [RETURN or 'ENTER , is placed in
the variable—N$ in this case.

In this example, the variable is a string. But
numeric variables can be used as well. The
following program shows how a list of five

names and ages is built up using simple INPUT
commands. (This program uses two arrays to
store information, so look at pages 152 to 155
if you're not familiar with how these work.)

liCK FAX. El
5 DIM NAME$(5), AGE(5)
10 FOR N=1 TO 5
20 PRINT "NAME:"
30 INPUT NAME$(N)
40 PRINT "AGE:"
50 INPUT AGE(N)
60 NEXT
70 FOR N=1 TO 5
80 PRINT NAME$(N);" ❑ IS111";AGE(N);

"III YEARS OLD"
90 NEXT

1M1
5 DIM NAME$(5), AGE(5)
10 FOR N=1 TO 5
20 PRINT "NAME:"
30 INPUT NAME$(N)
40 PRINT "AGE:"
50 INPUT AGE(N)
60 NEXT N

70 FOR N=1 TO 5
80 PRINT NAMES(N);" ❑ IS";AGE(N);

"YEARS OLD"
90 NEXT N

5S
5 DIM n$ (5,10): DIM a (5)
10 FOR n=1 T0 5
20 PRINT "Name: ❑ "
30 INPUT n$ (n)
40 PRINT "Age: El "
50 INPUT a (n)
55 CLS:NEXT n
60 FOR n =1 TO 5
70 PRINT n$ (n); ❑ is ❑ "; a(n);

" ❑ years old"
80 NEXT n

On the ZX81, type entirely in capitals. Omit
Lines 5 and 55, and add:

5 DIM N$ (5,10)
7 DIM A (5)
55 CLS
57 NEXT N

It is important that the right type of inform-
ation is given. If you tried to type in a name
when asked for an age, the program stops and
PRINTS an error message (except on the
Acorn). Running the program again may mean
that you lose everything already entered, and
have to start from scratch. That is not too
much of a problem with only five entries, but
in a large program it can be annoying.

USING PROMPTS
The program above may seem pretty simple,
but even that little program contains one
important feature. That is the prompt con-
tained in the first two PRINT statements. A
prompt is a message telling you that the
computer wants you to enter something.

If you delete Lines 20 and 40, the
program still RUNs. With most computers
you get some sort of prompt on the screen
anyway. For example, many computers
display a question mark.

If you are familiar with the com-
puter, the INPUT prompt is some-
times enough to remind you that some-
thing needs to be entered. But it is not enough
to tell you what type of information. Imagine
you are a stranger to the program, perhaps
with no experience of the computer being used
and no working knowledge of the program. A
question mark is just baffling.

Good use of prompts is of benefit even with
your own programs, as it is very easy to forget
exactly how the information should be en-

I tered. Entering dates is a good example. Most

accounting programs, and many others, re-
quire dates to be entered. In many cases this
information is used by the program, either in
search routines when you want to find a
specific entry, or to sort the entries into
chronological order. If you do this, you must
ensure that you always enter dates in a stan-
dard form.

A common method is to use six digit dates,
sometimes with obliques or fullstops to sepa-
rate the day, month and year. So a typical
INPUT routine may look something like this:

SSCCBt©
100 PRINT "ENTER DATE (IN FORMAT

DD/MM/YY)"
110 INPUT D$

This reminds you, not only that a date is
needed, but also in what form it must be
entered. If you wanted to enter the 3rd
September 1945, you would actually type:
03/09/45. You can choose any format you like

as long as you tell the user what you want.
The use of the INPUT command in the

programs shown so far is pretty simple. But it
can be made even simpler, because with many
computers you can incorporate the prompt in
the INPUT command itself. (On the Commo-
dores the length of the prompt is limited to 20
characters.) Going back to the name and age
program, you can delete Lines 20 and 40, and
rewrite 30 and 50 as:

Ell
30 INPUT "NAMED"NAME$(N)
50 INPUT "AGED"AGE(N)

ECK
30 INPUT "NAMED"; NAME$(N)
50 INPUT "AGED"; AGE(N)

30 INPUT "NAME"; NAME$(N)
50 INPUT "AGE"; AGE(N)

30 INPUT "NameIII"; n$(n)
50 INPUT "Age Ill"; a(n)

a
20 PRINT "NAMED"

30 INPUT N$ (N)
40 PRINT "AGE "
50 INPUT A(N)

Note the spaces inside the quote marks. With
many computers, your keyboard entry is
PRINTed straight after the prompt, so a space
helps make things clearer. However, the
Dragon and Tandy PRINT the spaces for you.

This is not the only way the routine can be
condensed. Normally, more than one item can
be entered, using just a single INPUT com-
mand—the only computer on which this is not
possible is the ZX81. The variables into which
the information is fed are separated by com-
mas. So you could replace Lines 30 and 50
(remember to delete Line 50) above with this
single line:

30 INPUT "ENTER NAME AND AGED"
NAME$(N),AGE(N)

30 INPUT "ENTER NAME AND AGE ❑ ";
NAME$(N),AGE(N)

30 INPUT "ENTER NAME AND AGE - ,
NAM E$ (N) ,AG E (N)

30 INPUT "Enter name and age 0";
n$(n),a(n)

How you actually enter the two pieces of
information is different on each computer. On
the Spectrum press ENTER after each ',el-.

On the Dragon, Tandy, Acorn and Commo-
dores you can either use the Spectrum method
or else type in the name and age separated by a
comma and only then press 'ENTER I.

When you use a single prompt, it is
important that it tells you everything you
need to know about what entries are required.

Alternatively, on the Acorn and Spectrum,
you can always split the prompt again. As
long as each prompt is kept in quotation
marks, the computer just PRINTs them, and
does not treat them as variables. So, Line 30
can be rewritten again:

30 INPUT "NAMED" NAME$(N), "AGED"
AGE(N)

30 INPUT "Name"; n$ (n); "age";
a (n)

However, note that it is not possible to do this
on the Commodores, Dragon, Tandy or ZX81.

To make the display a little tidier, INPUT
prompts can usually be positioned using the
normal TAB commands (see pages 117 to 123).

INPUTTING A WHOLE LINE
The main problem you are likely to come
across with INPUT is when you are entering
strings containing commas or with spaces at
the beginning. If you want a single variable to
contain an address, for example, you need to
include commas. And spaces at the beginning
might be handy for neat screen presentation.

The problem is that most computers ig-
nore the leading spaces, although they have
no trouble with those between words. And
frequently, they also ignore anything occur-
ring after a comma, so you could find large
portions of your information going missing.

Fortunately, some computers have a com-
mand which solves this problem, and the
Spectrum has a way of avoiding it.

The most common solution is to include
the entry in quotation marks. The Spectrum,
for instance, automatically PRINTs quotation
marks when a string variable is used in an
INPUT command. On the other computers
they have to be typed in by the user, so any
prompt should point out when they are
necessary.

Another solution, available on the Acorn,
Dragon and Tandy computers, is to use the
INPUT LINE or LINE INPUT command. This is
used in exactly the same way as INPUT:

10 INPUT LINE "Please enter your
address ", A$

10 LINE INPUT "PLEASE ENTER YOUR
ADDRESS "; A$

This has the advantage of putting everything
up to the next !RETURN', including commas
and leading spaces, into the variable. It is also
more foolproof as you don't have to rely on
the user to remember to type in the quotes.

SPEED UP YOUR INPUTS
The main advantage of the INPUT or INPUT
LINE command is that you can alter what you
are entering right up to the moment of
pressing I RETURN or 'ENTER I. So if you make a
typing error, realise you are giving the wrong
information, or simply change your mind,
you can delete and try again.

The disadvantage is that this system is
relatively slow and if you are writing
programs for people who are not familiar with
computers, they may not realise, or forget,
that 'ENTER S or I RETURN I must be pressed.

In programs using a lot of menus, or yes/no
answers, having to hit that extra key makes
the program very slow: It can even double the
number of keystrokes. So to avoid this there is

a way of getting the computer to READ which
keys you are pressing as you press them.

The command used is INKEY$ on the
Sinclairs, Tandy and Dragon, GET$ or INKEY$
on the Acorns and GET on the Commodores.

When the computer encounters one of
these keywords, it looks to see if a key
pressed, and then passes the character relating
to that key to the variable. This is commonly
used for yes/no replies to questions like `Dc
you want another game' (see page 35). It is
written like this:

100 LET A$ = GET$

RAK 13:KI
100 GET A$ IF A$ = ""THEN GOTO 100

a NC 'HI
100 LET A$ =1NKEY$: IF A$ = `"'THEN

GOTO 100

100 LET A$ =IN KEY$
110 IF A$ = " " THEN GOTO 100

Note that on the Acorn, GET$ makes the
computer wait until a key is pressed, while the
others have to be made to wait.

Any string variable can be used—A$ is just
an example. The computer stops at Line 100.
If you then press R, A$ will contain the letter
R. You could enter a number or a space or—
any of the characters on the keyboard—even
keys such as ENTER . Although the entry can be
virtually anything, it can only be one character
long. As soon as a key is pressed, the computer
carries on.

DRAWING ON THE SCREEN
Now look at the following program, which
uses four keys to draw on the screen (this
program does not RUN on the ZX81).

It uses Z, X, P and L to draw on the Acorn,
Dragon and Spectrum, and the cursor keys on
the Commodores. You can also press 2 to draw
in the screen colour so the line is invisible, and
press 1 to return to line drawing again.

10 MODE 1
20 LET X=500: LET Y=500
30 MOVE X,Y
40 REPEAT
50 LET A$ =GETS
60 IF A$="P" THEN LET Y=Y+ 4
70 IF A$="L" THEN LET Y= Y-4
80 IF A$="Z" THEN LET X= X-4
90 IF A$ = "X" THEN LET X= X+ 4
100 IF A$="1" THEN GCOL0,3

You can draw a screen image under
complete keyboard control using a
short, simple program

110 IF A$ = "2" THEN GCOL0,0
120 DRAW X,Y
130 UNTIL A$="111 "

IKK1
1 0 FOR Z=0 TO 69:READ X
20 POKE 832 + Z,X:NEXT Z :GOTO 90
30 DATA 169,29,141,24,208,169,59,141,

17,208
40 DATA 169,32,133,252,169,0,133,251,

160,0,169,0,145,251
50 DATA 200,208,251,24,165,252,201,

63,240,4,230,252,208,236
60 DATA 162,0,169,0,157,0,64,232,224,

63,208,248
70 DATA 162,0,169,13,157,0,4,157,0,5,

157,0,6,157,232,6,232,208,241,96
90 SYS 832
100 SC =8192:XX =100:YY =100:CO =1
110 LET Y = YY:LET X = XX
120 GET A$:IF A$ = "" THEN GOTO 120
130 IF A$="11" THEN LET X= X-1
140 IF A$="11" THEN LET X=X+1
150 IF A$ = "0" THEN LET Y = Y-1
160 IF A$="g" THEN LET Y=Y+1
165 IF A$="1" THEN CO=1
166 IF A$="2" THEN CO = 2
170 LET L= SC+ (INT(Y/8) .320+ 8*

INT(X/8) + (Y AND 7))
180 IF L<8192 OR L> 16191 THEN GOTO

110
190 LET XX= X:LET YY=Y
200 IFC0=1THEN POKE L, PEEK(L) OR

(2 (7 — (XX AND 7)))
210 GOTO 110

fig !HI
10 PMODE4,1:PCLS:SCREEN 1,1
20 LET X =100:LET Y=100
40 LET X1 = X:LET Y1 = Y
50 LET A$= INKEY$
60 IF A$="P" THEN LET Y = Y1 — 4
70 IF A$ = "L" THEN LET Y= Y1 +4
80 IF A$="Z" THEN LET X= X1-4
90 IF A$= "X" THEN LET X= X1 +4

The program allows you to take the
line in different directions by pressing
particular keys

100 IF A$ = "1" THEN COLOR 5
110 IF A$="2" THEN COLOR 0
120 IF A$ = 	" THEN STOP
130 LINE (X,Y) — (X1,Y1),PSET
140 GOTO 40

10 INK 2
20 PLOT 127,87
30 IF 1NKEY$ = "p" THEN DRAW 0,2
40 IF 1NKEY$ = "I" THEN DRAW 0,-2
50 IF 1NKEY$ = "z" THEN DRAW —2,0
60 IF 1NKEY$ = "x" THEN DRAW 2,0
70 IF 1NKEY$="1" THEN INK 2

Practise drawing these shapes or any
others which you would like to copy
following the instructions below

80 IF INKEY$ ="2" THEN INK 7
90 IF 1NKEY$ = " E" THEN STOP
100 PAUSE 10
110 GOTO 30

This kind of routine is extremely useful in
graphics and games. The line is drawn while
the keys are pressed. But note that the
computer will take only one key at a time, so
diagonal lines are rather difficult to draw as
they consist of a series of short steps.

Using INKEY$ or GET$ with single charac-
ters is also very handy in any program using
menus. The following program PRINTS out a
menu as part of a datafile program.

10 DATA CREATE FILE, ENTER, VIEW,

Note that diagonals must be drawn as
a series of short steps—you cannot
press two keys at once

EDIT, SEARCH, PRINT, LOAD, SAVE, STOP
15 RESTORE
20 FOR N = 1 TO 9
30 READ HEADING$
40 PRINT TAB(5);N;TAB(10);HEAD1NG$
50 NEXT N
60 PRINT:PRINT TAB(5)"YOUR CHOICE >"
70 LET A$= GET$
80 IF A$="1" THEN GOSUB 1000
90 IF A$="2" THEN GOSUB 2000
100 IF A$="3" THEN GOSUB 3000
110 IF A$="4" THEN GOSUB 4000
120 IF A$="5" THEN GOSUB 5000
130 IF A$="6" THEN GOSUB 6000
140 IF A$="7" THEN GOSUB 7000
150 IF A$="8" THEN GOSUB 8000
160 IF A$="9" THEN GOSUB 9000
170 GOTO 15

Delete Line 70 in the Acorn program above
and substitute:

70 GET A$: IF A$="" THEN GOTO 70

tgl !HI
Delete Line 70 above and substitute:

70 LET A$=1NKEY$: IF A$="" THEN
GOTO 70

a
Delete Lines 10 to 70 above and substitute:

10 DATA "Create new file", "Enter
records", "View records", "Edit
records", "Search records",
"Print file", "Load file", "Save
file", "Stop"

15 RESTORE
20 FOR n=1 TO 9
30 READ h$
40 PRINT TAB 5; n; TAB 10; h$
50 NEXT n
60 PRINT: PRINT TAB 5; "Your choice > "
70 LET A$= 1NKEY$: IF A$= `"'THEN

GOTO 70

With this program, the computer goes
straight to the relevant subroutine as soon as
you press a key—unless you press a key other
than the numbers 1 to 9. In that case, Line
170 rePRINTs the menu and then lets you have
another go.

A SECRET PASSWORD PROGRAM
The previous program will work perfectly as
long as there are no more than nine options.
But if you try to type in 10 the computer
assumes you are entering 1. This is because
the program moves on as soon as you have
typed the first digit.

However, there is a way to enter whole
words. And because nothing is shown on a
screen it is ideal for entering a password or
sectet code so that only you can RUN a
program. Each digit is entered using INKEY$
or whatever, and then added on to the last
one. Here is the program:

LI
10 PRINT ""ENTER PASSWORD"
15 REPEAT
20 LET K$ = GETS
30 LET P$ = P$ + K$
40 UNTIL LEN(P$) =7
50 IF P$ < > "BANANAS" THEN END
60 PRINT "O.K."
70 REM (Rest of program follows)

t.F` KAKI

10 PRINT" ❑ AggigigiglAggg"
TAB(13) "ENTER PASSWORD"

20 FOR Z=1 TO 7
30 GET K$:IF K$="" THEN GOTO 30
40 LET P$ = P$ + K$

50 NEXT Z
60 IF P$ < > "BANANAS" THEN END
70 PRINT "a" TAB(13) "II PASSWORD

OKAY ❑ ❑ El"
80 REM (REST OF PROGRAM FOLLOWS)

14Z
10 PRINT "ENTER PASSWORD"
20 LET K$=INKEY$:IF K$ ="" THEN

GOTO 20
30 LET P$= P$ + K$
40 IF LEN(P$) < >7 THEN GOTO 20
50 IF P$ < > "BANANAS" THEN STOP
60 PRINT "O.K."
70 REM (REST OF PROGRAM FOLLOWS)

55
On the ZX81, type entirely in capitals. Omit
Line 40 and substitute:

40 LET K$=1NKEY$
45 IF K$=""THEN GOTO 40

10 LET p$=""
20 PRINT "ENTER PASSWORD"
30 PAUSE 0
40 LET k$=1NKEY$: IF k$="" THEN

GOTO 40
50 LET p$=p$ + k$
60 IF LEN p$< >7 THEN GOTO 30
70 IF p$< > "bananas" THEN STOP
80 PRINT "O.K."
90 REM (rest of program follows)

This routine starts off with an empty string
(P$) and progressively adds on the characters
one by one until the length of the password is
correct. Since the characters entered are not
PRINTed on the screen, it stops people watch-
ing the screen and learning the password.

Another use of INKEY$ (and similar com-
mands) is to delay a program. This is handy
when a screenful of information has to be
examined. After the information has been
PRINTed, putting in an INKEY$, GET$ or GET
command stops any scrolling or clearing until
you press a key (it doesn't matter which).

El
The BBC micro and the Electron have a few
more commands similar to GET$, but in

certain cases more useful. The closest to G ET$
is INKEY$. The only difference is that, whereas
a GET$ command makes the computer wail
forever, until a key is pressed, with INKEY$
you specify a time limit.

INKEY$ is always followed by a number in
brackets. This specifies the waiting time in
hundredths of a second. So to make the
computer wait for five seconds, you would
write: A$ =1NKEY$ (500). This is an ex-
tremely useful way of making a computer
pause for a specified length of time.

If a key is pressed before the end of the
period, then the computer continues with the
program—the time delay is simply a max-
imum. If no key is pressed before the time is
up, then a null string ("") is returned.
INKEY$(0) makes the computer scan the key-
board but not wait at all—useful in games
where speed is most important.

GET is similar to GET$, but, instead of
returning a string, it gives the ASCII number
of the key pressed. This does not appear on
the screen, but it can be stored in a variable
for use by the computer. INKEY is similar to
GET but, again, it is the key's ASCII value which
is returned. If no key is pressed within the time
limit then a value of —1 is given.

IN KEY and INKEY$ take their values from
the last character in the keyboard buffer. This
is a separate section of memory that stores the
keypresses. This is not accurate enough or
fast enough for many games, where keys are
being pressed rapidly or held down as the

buffer may be storing a character from earlier
in the game. But there is an alternative version
which examines the keyboard itself rather
than the buffer.

You can follow INKEY with a negative
number in brackets. In this case the number is
not a time limit, but a special code value of the
key you are testing for. So if you wanted to see
if the N key was being pressed you would use
IN KEY (— 86). You'll find a list of all the codes
in the manual.

IN KEY with a negative number checks all
keys being pressed, even if you press them at
the same time. So this technique is very useful
for graphics or games where things like
diagonal movement using two keys are
needed. The following program demonstrates
this. Compare it with the earlier program
which used GET$, and you'll see how much
smoother the lines are using this method:

10 MODE 5
20 X = 500:Y = 500
30 MOVE X,Y
40 REPEAT
50 IF INKEY(— 58) THEN Y= Y + 4
60 IF INKEY(— 42) THEN Y= Y — 4
70 IF INKEY(— 26) THEN X= X— 4
80 IF INKEY(— 122) THEN X= X+ 4
90 DRAW X,Y
100 UNTIL INKEY(— 99)

Use the cursor control keys to draw and press
the space bar to stop.

At present, this program draws a contin-
uous line and there is no way of leaving a gap.
But add these next four lines to the program
and have a choice of drawings in black, i.e.
invisible, as well as red, yellow or white. Press
B, R, Y or W for the colours.

42 IF INKEY(— 101) THEN GCOL 0,0
44 IF INKEY(—52) THEN GCOL 0,1
46 IF INKEY(—69) THEN GCOL 0,2
48 IF INKEY(—34) THEN GCOL 0,3

KKI
On Commodore computers there are two
keywords, apart from the commonly used
INPUT and GET, which can be used to enter
information.

INPUT # and GET # are input/output state-
ments normally used to retrieve DATA from a
device or file rather than the keyboard. GET #
reads a single character at a time, whereas
INPUT # retrieves DATA in the form of vari-
ables of up to 80 characters in length.

Of these two keywords, INPUT # is prob-
ably the more useful. It can be incorporated as
part of a useful escape-proof INPUT routine:

100 OPEN 1,0: PRINT "COMMENT/PROMPT ";:
INPUT # 1,A$: PRINT: CLOSE1

The OPEN - and CLOSE statements can in fact
span the entire program if necessary: both,
however, are essential.

Try RUNning this as a one-line program.
Then try to escape by simulating a possible
accidental INPUT entry. It's difficult, and
points to the usefulness of escape-proof rout-
ines such as this when someone perhaps
unfamiliar with computers and INPUT rout-
ines is left to his or her own devices. You can
escape by simultaneously pressing I RUN/STOP I
and I RESTORE1—an unlikely combination of
keys to press by accident.

If you want the program to accept null
entries, simply delete the semicolon which
follows the prompt statement.

The one advantage of GET # is that, unlike
INPUT # , it can read DATA which includes
colons, semicolons, commas or RETURNs
(CHR$13). With either type of INPUT state-
ment, this can be done only by incorporating
the entry within full quotes.

Just like a business machine, your
computer can store or calculate
financial records. Here's a simple
program to keep track of your
income and expenditure

Keeping track of family spending—'where
does all the money go?'—is a problem with
which most people are only too familiar.

This household accounts program is de-
signed to provide the answers. And it will rut
on all the machines except the Vic and ZX81.

To update your accounts, you 'feed' it, once
a month or whenever else you can spare the
time, with the details of your income (fa
example, from pay slips) and expenditure (foi
example, from cheque books and standir4
orders). At any time you like, it will give you ar
analysis of how your money has been spent
and how your income and expenditure com•
pare for the year to date.

The program itself is quite long. But when
you have entered it once, and SAVEd it on one
or more tapes, it will last virtually forever—oi
at least until the tape or tapes wear out.

The program gives you one column feu
income and seven for expenditure uncle'
different headings. These latter subdivisions
can of course be varied to suit yourself: all you
have to do is alter the wording in the DATA
statements in the program when you enter it.
Income, however, must be last, and you must
have eight 'columns' altogether, or the
program will not work.

The program must be SAVEd in twc
sections—first, the actual program itself, and
second, all the information you have fed into
it up to your last entry. This means that you
will need two program names, one for each of
the two bits.

To SAVE the program proper, just follow
the normal SAVEing procedure for your ma-
chine as given in your manual and/or on pages
22 to 25 of Input.

To reLOAD the program, again follow your
usual procedure for LOADing taped games or
your own programs.

Instructions for SAVEing and LOADing the
DATA itself are given below.

When you RUN the program, the main
menu will give you seven options:
1 Make an entry
2 View the entries
3 Save on tape
4 Load from tape
S Printer yes/no
6 Change an entry
7 Quit the program

MAKING AN ENTRY
To make an entry, press 1 when the main
menu appears. Do not press I ENTER' or
I RETURN I at this stage.

The computer will ask you in turn for these
items of information: Date; Item; Amount;
and Category (the category you have already
chosen and entered in the DATA statement).

Key in the information in the order given,
pressing I ENTER' or I RETURN I (whichever your
computer uses) after each one.

When you have completed your entries,

wait for the computer to ask you for a new
date, then press I ENTER I or I RETURN I. This will
take you back to the main menu.

VIEWING AN ENTRY
To view an entry or series of entries, press key
2 when the main menu appears. Do not press
I ENTER I or 'RETURN'.

The computer will display a table showing
the various categories—seven of expenditure,
one of income. To select a category, press the
appropriate number (again, do not press
'ENTER! or I RETURNI) and the computer will list

ACORN/BBC: Disc users should
delete lines 15, 30 and 870 and note
that there will be less room for
entries.

■ ENTERING AND SAVEING
THE PROG RAM

■ THE MENU OPTIONS
■ MAKING AN ENTRY

IN THE RECORDS

■ UPDATING THE RECORDS
■ CHECKING THE BALANCE
■ TAKING A PRINT-OUT
■ STORING YOUR FINANCES

ON TAPE

all the items it has in that category, with the
total to date at the end.

On the Spectrum, the screen will display
the question 'scroll?' if there is insufficient
room to display all the entries simultaneously.
Do not press N at this stage; you must go right
through the listings.

When you have finished, press 'ENTER or
'RETURN' to get back to the main menu.

If you select option 8, you will get not just
an income total, but also the total for all
categories of expenditure, plus your balance
of income over expenditure (or vice versa).

CHANGING AN ENTRY
When you press 6 for the option to alter an
entry, the computer will display a list of all the
entries you have made, regardless of category.

You can move backwards or forwards
among the list by using the prompts which
will appear on the screen. The computer will
also tell you how to edit the entry.

Once you have pressed ENTER! or 'RETURN!
 after making the alteration, the computer will

automatically return you to the main menu.
To make a second alteration, you will have to
select option 6 again.

PRINTER OPTION
The printer option command is as simple as a
light switch—it is either 'on' or 'off.

When you press option 5 (without 'ENTER!
 or RETURN I!) on the main menu, the computer

will ask you to press Y if you want to use the
printer, N if you don't. If you press Y, you will
be returned to the main menu and (until you
return to option 5 and turn the printer off) all
the information that would normally be dis-
played on the screen when using option 2 will
be printed out instead.

Be very careful not to press Y if you have no
printer connected. The Spectrum will ignore
the instruction in this case, but on any of the
other three computers you could lose all the
information you have entered so far.

SAVEING AND LOADING
The second stages of SAVEing and LOADing
are as follows:

To SAVE the financial DATA you have
entered press option 3 (without 'RETURN or
ENTER!). Now type in a name for the file-
"MONEYFILE", for example. Then press
RETURN I or ENTER I and the 'record' button on
your tape recorder. When the DATA has been
SAVEd you will be returned to the main menu
where you can press option 7 to quit the
program.

To LOAD the information that you have
SAVEd previously, press option 4 on the main
menu. Now enter your file's name and press
RETURN or !ENTER!, then push the 'play'
button on your tape recorder. When the
program has been loaded the computer will
take you back to the main menu.

10 MODE6
15 • TAPE
20 *OPT1,1
30 *OPT2,1
40 @% = &2020A:N = 0:W= 3:VDU14:

PAY = 0: SPENT= 0:DIM A$(300),
A(300), D$(300),K$(7)

50 FOR T = 0 TO 7:READ K$(T): NEXT T
60 PROCMENU
70 IF A=1 THEN PROCENTRY
80 IF A = 2 THEN PROCVIEW
90 IF A = 3 THEN PROCSAVE
100 IF A = 4 THEN PROCLOAD
110 IF A= 5 THEN PROCPRINT
120 IF A=6 THEN PROCCHANGE
130 IF A< >7 THEN 60
140 PRINT"ARE YOU SURE (Y/N)":

G =GET AND &5F:IF G < > 89 THEN 60
150 MODE6:END
160 DEF PROCENTRY
170 Z= 0:CLS
180 IF N > 299 THEN PRINT""MEMORY

FULL":SOUND1, — 15,100,5:
G = INKEY(200):ENDPROC

190 PRINT"`Type RETURN in the DATE
field for MENU"

200 PRINT"`DATED El 1=1
ITEMPI ❑❑❑❑❑❑❑❑❑❑
❑ AMOUNT❑❑ CATGY"

210 VDU28,0,24,39,4
220 INPUT TAB(0,Z)D$(N +1):IF

D$(N + 1) = "" THEN 350
230 INPUT TAB(10,Z)A$(N + 1):INPUT

TAB (26,Z)A(N + 1):INPUT TAB(35,Z)
CA$

240 D$(N + 1) = LEFT$(D$(N +1),8):
A$(N + 1) = LEFT$(A$(N +1),16)

250 GOTO 270
260 PRINT TAB(35,Z)"111111 	":

INPUT TAB(35,Z)CA$
270 X= 0:FOR T=0 TO 7:IF INSTR

(K$(T),CA$) =1 THEN X= X+ 1:Y= T
280 NEXT
290 IF X< >1 THEN 260
300 A$(N +1) = CHR$(Y) + A$(N +1)
310 IF Y=7 THEN PAY= PAY+ A(N +1)

ELSE SPENT = SPENT + A(N + 1)
320 Z=Z+1:N=N+1
330 IF Z> 19 THEN Z= 0:CLS
340 GOT0220

350 VDU28,0,24,39,0:ENDPROC
360 DEF PROCSHOWCAT
370 CLS:SUM = 0:VDU W
380 PRINT'K$(C) 'STRING$(LEN(K$(C)),

CHR$(224))
390 VDU28,0,24,39,3
400 FOR T=1 TO N
410 IF N=0 THEN 460
420 S$ = R1GHT$(A$(T),1)
430 IF ASC(LEFT$(A$(T),1)) < > C

THEN 460
440 PRINT'D$(T)TAB(10)RIGHT$

(A$(T),LEN(A$(T))-1)TAB(29),
A(T);

450 SUM = SUM + A(T)
460 NEXT
470 PRINTTAB(32)" 	 15

480 PRINTTAB(22)"TOTALIII f",SUM
490 IF C< >7 THEN 520
500 PRINT"`YOUR TOTAL EXPENDITURE

IS ❑ f";SPENT
510 PRINT""YOUR BALANCE IS ❑ E";

PAY—SPENT
520 VDU1,10,1,10
530 VDU 3
540 PRINT""PRESS ANY KEY TO

CONTINUE WITH VIEWING'"'"PRESS
RETURN FOR MAIN MENU"

550 G = GET: VDU28,0,24,39,0:ENDPROC
560 DEF PROCVIEW
570 CLS:PRINT
580 FOR T=0 TO 7:PRINT'TAB(10);

STR$(T+ 1);" 	";K$(T):NEXT
590 PRINT""WHICH CATEGORY NUMBER ?";
600 C= GET— 49

610 IF C= -36 THEN ENDPROC
620 IF C<0 OR C>7 THEN 600
630 PROCSHOWCAT
640 IF G=13 THEN 650 ELSE 570
650 ENDPROC
660 DEF PROCMENU
670 CLS
680 PRINTTAB(10,2)"MAIN MENU"
690 PRINTTAB(10,5)"1:— Make an entry"
700 PRINTTAB(10,7)"2: — View entries"
710 PRINTTAB(10,9)"3: — Save to tape"
720 PRI NTTAB (10,11)"4: — Load from

tape"
730 PRINTTAB(10,13)"5:— Printer

option"
740 PRINTTAB(10,15)"6:— Change entry"
750 PRINTTAB(10,17)"7: — Quit program"
760 PRINTTAB(10,20)"SELECT OPTION"
770 A= GET— 48
780 IF A<1 OR A>7 THEN 770
790 ENDPROC
800 DEF PROCSAVE
810 INPUT "NAME OF FILE",D$:IF

D$="" THEN ENDPROC
820 IF D$="" THEN ENDPROC
830 H =OPENOUT(D$):PRINT"SAVING

INFORMATION NOW":PRINT# H,N
840 FOR T=1 TO N:PRINT# H,D$(T),

A$(T),A(T):NEXT:CLOSE # H:
ENDPROC

850 DEF PROCLOAD
860 INPUT"LOAD WHICH FILE",D$
870 PRINT"PRESS PLAY ON RECORDER"
880 H = OPENIN(D$):INPUT# H,N
890 FOR T=1 TO N:INPUT# H,DS(T),

A$(T),A(T)
900 IF ASC(A$(T))= 7 THEN PAY=

PAY + A(T) ELSE SPENT=
SPENT+ A(T)

910 NEXT:CLOSE# H:ENDPROC
920 DEF PROCPRINT
930 PRINT"PRINTER (Y/N)"
940 G = GET AND &5F:IF G=89 THEN

W=2:GOTO 960
950 IF G < >78 THEN 940 ELSE W=3
960 ENDPROC
970 DEF PROCCHANGE
980 CLS:T = 1
990 IF N=0 THEN ENDPROC
1000 REPEAT
1010 CLS:PRINT""ENTRY NUMBER 0";

STRVT)'D$(T),RIGHT$(4(T),
LEN(A$(T)) — 1)"f";A(T),
K$(ASC(A$(T)))"

1020 PRINT",' TO MOVE BACK"'
"'.' TO MOVE FORWARD'""SPACE
BAR TO CHANGE ENTRY"

1030 A$ =GETS
1040 IF A$="," THEN T=T-1: IF T<1

THEN T=1
1050 IF A$="." THEN T=T+1:IF T> N

THEN T=N
1060 UNTIL (A$=" ❑ " OR A$=CHR$(13))
1070 IF A$=CHR$(13) THEN ENDPROC
1080 E=T:PRINT"`CHANGING THIS

ENTRY"
1090 CAS= CHR$(ASC(A$(E)))
1100 IF ASC(AVE)) =7 THEN PAY=

PAY—A(E) ELSE SPENT= SPENT-
A(E)

1110 INPUT"DATE ❑ ",Q$:1F Q$< >""
THEN D$(E)=Q$

1120 INPUT"ITEMO",Q$:IF Q$< >""
THEN A$(E) = 0$ ELSE A$(E)=R1GHT$
(A$(E),LEN(A$(E)) —1)

1130 INPUT"AMOUNTO",Q$:IF 0$ < >""
THEN A(E) = EVAL(Q$)

1140 INPUT"CATEGORYEI",Q$:IF
Q$ < >"" THEN CAS= Q$

1150 GOTO 1170
1160 INPUT"RE— ENTER CATEGORY",CA$
1170 X= 0:FOR T=0 TO 7
1180 IF INSTR(K$(T),CAS) =1 THEN

X=X+1:Y=T
1190 NEXT T
1200 IF X< >1 THEN 1160
1210 A$(E)=CHR$(Y) +A$(E)
1220 IF Y=7 THEN PAY= PAY + A(E) ELSE

SPENT= SPENT+ A(E)
1230 PRINT"CORRECTION MADE":

G = INKEY(200)
1240 ENDPROC
1250 DATA HOUSEKEEPING,

ENTERTAINMENT, RATES & RENT,
CLOTHING, MOTORING, HOLIDAYS,
MISCELLANEOUS, INCOME

The ❑ symbol denotes an important space.
Enter on the space key, not as a graphic.

50 LET mn =200: IF PEEK 23733=127
THEN LET mn =100

100 DIM c$(8,16): DIM a(mn): DIM
a$(mn,23)

110 LET u= 0: LET v=1
120 FOR n=v TO 8: READ c$(n): NEXT n
130 POKE 23658,8
140 LET k$=".00": FOR n=v TO 7:

LET k$=k$ + CHR$ 8: NEXT n
190 LET p = 2: LET n= u: LET cr=u
200 CLS : PRINT BRIGHT v; PAPER

2; INK 6;AT 2,6; "DEMDADIDNE
❑ M ❑ E ❑ N ❑ U ❑❑ "

210 PRINT BRIGHT v; PAPER 7;AT
5,6;" 	— ❑ MAKE AN ENTRY ❑ CI";
AT 7,6;" 02: — D VIEW
ENTRIES ❑ ❑ ❑ ";AT 9,6;" ❑ 3:
—D SAVE TO TAPED1110"; AT
11,6;"E14:— ❑ LOAD FROM TAPED" .

 AT 13,6;" D 5: — E PRINTER OPTION D";
AT 15,6;" 6: — D CHANGE
ENTRY ❑ ❑ ❑ ";AT 17,6;"1117:
—❑ QUIT PROGRAM ❑ ED"

220 PRINT INK 3; FLASH v; BRIGHT
v;AT 20,6;" ❑ — ❑ SELECT
OPTION. ❑ — ❑ "

230 IF 1NKEY$="" THEN GOTO 230
240 LET z$=1NKEY$: IF z$ < "1" OR

z$ > "7" THEN GOTO 230
250 CLS : GOSUB 1000*VAL z$
260 GOTO 200
1000 LET c=u
1005 LET c=c+v: IF c=mn+v THEN

RETURN
1006 IF a$(c,v) ="D" THEN GOTO 1010

1007 GOTO 1005
1010 PRINT AT u,u; BRIGHT v; PAPER

2; INK 7;"E E DATED E 	E ❑
ITEM DEEDED AMOU NT 0 CAT"

1015 IF c=mn +v THEN RETURN
1020 INPUT "Enter date ❑ "; LINE

a$(c,2 TO 9): IF a$(c,2) ="111"
THEN RETURN

1030 PRINT TAB u;a$(c,2 TO 9);
1040 INPUT "Enter item ❑ "; LINE

a$(c,10 TO 23): IF a$(c,10) = "
THEN GOTO 1040

1050 PRINT TAB 9;a$(c,10 TO 21);
1060 INPUT "Amount0";a(c): IF

a(c)=u THEN GOTO 1060
1070 LET w=a(c)*100: LET v$=STR$

w: PRINT TAB 27—LEN v$;a(c);
1080 INPUT "CategoryD "; LINE f$:

IF f$="" THEN GOTO 1080
1090 FOR n=v TO 8: IF = c$(n,v

TO LEN f$) THEN GOTO 1130

1100 NEXT n: GOTO 1080
1130 IF n=8 THEN LET cr= cr+ a(c)
1140 IF n< >8 THEN LET n=tt+a(c)
1150 PRINT TAB 29;c$(n,v TO 3)
1160 LET a$(c,v)=CHR$ (48+ n)
1200 LET c= c+v: GOTO 1015
2000 FOR n=v TO 8: PRINT PAPER v;

INK 7;AT n . 2,6;" ❑ ";n;":—
c$(n): NEXT n

2010 PRINT FLASH v; INK 2;AT 19,3;
" ❑ Select category (1 to 8) CI "

2020 IF 1NKEY$= `"' THEN GOTO 2020
2030 LET z$ = INKEY$: IF z$ < "1" OR

z$ > "8" THEN GOTO 2020
2040 LET t=u: LET c=u
2050 CLS : PRINT # p; PAPER 6;

BRIGHT v;TAB 10;c$(VAL z$);
TAB 31; "D"

2055 LET c= c+v: IF c=mn THEN GOTO
2500

2060 IF a$(c,v) = " ❑ " THEN GOTO 2500
2070 IF a$(c,v)< >z$ THEN GOTO 2055
2080 PRINT # p;a$(c,2 TO 9); TAB 10;

a$(c,10 TO 23);
2090 LET am = a(c)*100: LET n$=STR$

am: PRINT #p;TAB 29;k$;TAB 31 —
LEN n$;a(c)

2100 LET t=t+a(c)
2110 GOTO 2055
2500 PRINT # p;TAB 25;
	 ": LET tx=r100:

LET n$ = STR$ tx: PRINT # p;TAB
12;"TOTAL:— 111";TAB 29;k$;TAB
31 — LEN n$;t

2510 IF z$< > "8" THEN GOTO 2590
2520 LET tz=tr100: LET n$=STRS •

t7: PRINT '# p;"TOTAL

EXPENDITURE:— ❑ ";TAB 29;k$;TAB
31 — LEN n$;tt

2530 LET ba= (t—tt)*100: LET n$=
STR$ ba: PRINT '#p;TAB 10;
"BALANCE: — 0";TAB 29;k$;TAB 31 —
LEN n$;ba/100

2590 PRINT PAPER 2; INK 7'
"D D ❑ E Press a key to
continue ❑ 	"

2600 PAUSE u: IF PEEK 23560 =13
THEN RETURN

2610 CLS : GOTO 2000
3000 GOSUB 8000: IF re=v THEN

RETURN
3010 PRINT PAPER 6;AT 10,u;"D Enter

a file name for the data E":
INPUT LINE w$: IF LEN w$ >10 OR
LEN w$<v THEN GOTO 3010

3020 CLS : SAVE w$ DATA a(): SAVE
w$ DATA a$(): RETURN

4000 GOSUB 8000: IF re=v THEN
RETURN

4010 PRINT BRIGHT v;AT 10,u;"Enter
name of data to be loaded":
INPUT LINE w$: IF LEN w$ >10
THEN GOTO 4010

4020 PRINT PAPER 3; INK 7;AT 10,u;
"D ❑ ❑ Insert tape and press
play El D E"

4030 LOAD w$ DATA a(): LOAD w$
DATA a$()

4040 LET cr=u: LET n= u: FOR n=v
TO mn: IF aS(n,v) --="8" THEN LET
cr=cr+a(n)

4050 IF a$(n,1) < > "8" THEN LET
tt=tt+a(n)

4060 NEXT n: RETURN

5000 PRINT BRIGHT v;AT 10,u;
" ❑ Do you want to print out Y/N?0"

5010 PAUSE u: IF 1NKEY$="" THEN
GOTO 5010

5020 LET z$= 1NKEY$
5030 IF z$="N" THEN LET p= 2:

RETURN
5040 IF z$="Y" THEN LET p = 3:

RETURN
5050 GOTO 5010
6000 LET c=v: IF a(c)=u THEN RETURN
6010 PRINT AT u,u; BRIGHT v;

PAPER (VAL a$(c,v))—v; INK 9;
"0 Number ❑ ";c,c$(VAL a$(c,v))

6015 PRINT PAPER 2; INK 7;""DATE
❑❑❑❑❑❑ 1TEM ❑❑❑❑❑
000 0 00AMOUNTE":
PRINT 'a$(c,2 TO 9);TAB 10;a$
(c, 10 TO 23);

6020 LET am= a(c)*100: LET n$ = STR$
am: PRINT TAB 29;k$;TAB 31 — LEN
n$;a(c)

6030 PRINT PAPER 3; INK 7;AT 20,u;
"111A0 — ❑ Forwards ❑ ❑ ❑ ❑
Q0 0Backwards0 0 0 0 0 00
EDIT to alter record
0000 ❑❑❑ "

6040 PAUSE u
6050 IF 1NKEY$ ="Q" AND c>v THEN

LET c= c — v: GOTO 6010
6060 IF 1NKEY$ = "A" AND c< >mn THEN

LET c=c+v
6070 IF a(c)= u THEN LET c = c —v
6080 IF PEEK 23560=7 THEN GOTO 6100
6090 GOTO 6010
6100 INPUT BRIGHT v; "Enter new

date ❑ "; LINE a$(c,2 TO 9): IF
a$(c,2)= " 0" THEN GOTO 6100

6110 PRINT AT 5,u;a$(c,2 TO 9)
6120 INPUT BRIGHT v;"Enter new

item ❑ "; LINE a$(c,10 TO 23): IF a$
(c,10)=" ❑ " THEN GOTO 6120

6130 PRINT AT 5,10;a$(c,10 TO 23)
6135 IF a$(c,v) = "8" THEN LET

cr=cr—a(c)
6136 IF a$(c,v) < > "8" THEN LET

tt=tt—a(c)
6140 INPUT BRIGHT v;"Enter new

amount0";a(c): IF a(c) = u THEN
GOTO 6140

6150 LET am= a(c)*100: LET n$=STR$
am: PRINT AT 5,29;k$;TAB 31 — LEN
n$;a(c)

6160 INPUT BRIGHT v;"Enter new
category ❑ "; LINE f$: IF f$ =
THEN GOTO 6160

6170 FOR n=v TO 8: IF f$=c$(n,v
TO LEN f$) THEN GOTO 6190

6180 NEXT n: GOTO 6160
6190 LET a$(c,v)=CHR$ (48+n)
6200 IF n=8 THEN LET cr = cr + a(c)
6210 IF n<8 THEN LET tt=tt+a(c)
6220 RETURN
7000 GOSUB 8000: IF re=v

THEN RETURN
7010 RANDOMIZE USR u
8000 PRINT PAPER 4;AT 10,9;"0Are

you sure? ❑ "
8010 PAUSE u: LET re= u: IF INKEY$

< >"Y" THEN LET re= v
8020 RETURN
9000 DATA "HOUSEKEEPING",

"ENTERTAINMENT","RENT AND
RATES","CLOTH1NG","MOTORING",
"HOLIDAYS"," MISCELLANEOUS",
"INCOME"

NCI !HI
On the Tandy, use 247 instead of 223 in Lines
6040, 6050 and 6060.

10 PMODEO:PCLEAR1:CLEAR10000
20 DIM TE$(200),AM(200),DA$(200),

CT$(8),CA(200)
30 FOR N=1 TO 8:READ CT$(N):NEXT
40 DATA HOUSEKEEPING,ENTERTAINMENT,

RENT AND RATES,CLOTHING,MOTORING,
HOLIDAYS,MISCELLANEOUS,INCOME

50 U1$="# # # # # # # # #":
U2$="# # # #.# #"

60 CLS4:PRINT@11,"main menu";:
PRINT@70,"1: — ❑ ENTER DATA
111 0 CI CIO El";:PRINT@134,
"2: — ❑ VIEW ENTRIES ❑ ❑ 	"; :
PRINT@198,"3:— ❑ SAVE TO
TAPED El 0 ❑ ";

70 PRINT@262,"4:— ❑ LOAD FROM TAPE
❑ ❑ "; :PRIN T@326, " 5: — ❑ PRINTER
OPTIONDE";:PRINT@390,"6:— ❑
CHANGE AN ENTRY 0 ";:PRINT@454,
"7:— ❑ QUIT PROGRAM ❑ ❑ ❑ 0";

80 A$=INKEY$:IF A$ <"1" OR A$ >"7"
THEN 80

90 ON VAL(A$) GOSUB 1000,2000,3000,
4000,5000,6000,7000

100 GOTO 60
1000 CLS:IF NU >200 THEN PRINT@264,

"MEMORY FULL ❑ !":PLAY"T10ABCDEFG
P1 P1 ":RETURN

1010 GOSUB 1160
1020 GOSUB 1250:INPUT"DATE ❑ ";

DA$(NU)
1030 IF DAVNU) ="" THEN RETURN
1040 IF LEN(DAVNU)) > 8 THEN 1020
1050 PRINT@L,DA$(NU);
1060 GOSUB 1250:LINEINPUT"ITEM ❑ ?";

TE$(NU):IF LEN(TE$(NU)) > 25 THEN
1060

1070 A$ = LEFTVTE$(NU),11):PRINT@L+
15— LEN(A$)/2,A$;

1080 GOSUB 1250:INPUT"AMOUNT ❑ ";A
1090 IF A>9999.99 OR A<0 THEN 1080
1100 PRINT@L+21,USING U2$;A;:

AM (N U) =A
1110 GOSUB 1250:1NPUT"CATEGORY0";

CA$
1120 GOSUB 1180:IF F=0 THEN 1110
1130 CA(NU) = NM:PR1NT@L+29,LEFT$

(CT$(CA(NU)),3);
1140 IF NM< >8 THEN GT=GT+A
1150 NU=NU+1:L=L+32:IF L=448 THEN

1000 ELSE 1020
1160 L=64:PRINT@2,"date"TAB(13)"item"

TAB(22)"amount"TAB(29)"cat7;
1170 RETURN
1180 IF VAL(CA$)< >0 THEN 1230
1190 F= 0:FOR N=1 TO 8

1200 IF CA$=LEFT$(CT$(N),LEN(CA$))
THEN F=F+1:NM=N

1210 NEXT:IF F>1 THEN F=0
1220 RETURN
1230 IF VAL(CA$) > 8 THEN F=0:RETURN
1240 NM = VAL(CA$):F = 1:RETURN
1250 PRINT@448," ❑ ":PRINT@449,;:RETURN
2000 CLS3:FOR N=1 TO 8
2010 PRINT@69+ N•32,N;MID$(":- ❑ +

CTS(N) + STR1NG$(12," ❑ "),1,20);
2020 NEXT
2030 TT= 0:PRINT@449,"WHICH

CATEGORY ❑ ?";
2040 A$=INKEY$:1F A$ <"1" OR A$> "8"

THEN 2040
2050 NM =VAL(A$)
2060 IF PT=1 THEN PRINT# -2,CHR$(13):

PRINT# -2,TAB(21- LEN(CTVNM))/2);
CT$(NM):PRINT# -2,"0 ❑ DATE"TAB
(20)"ITEM"TAB(39)"AMOUNT"

2070 GOSUB 2280
2080 FOR NN= 0 TO NU
2090 IF CA(NN) < >NM THEN 2150
2100 IF PT=1 THEN PRINT# -2,USING F$;

DA$(NN);TES(NN);AM(NN)
2110 PRINT@L,DAVNN);:A$=LEFTVTE$

(NN),15):PRINT@L+ 17 - LEN(A$)/2,A$;:
PRINT@L+25,USING U2$;AM(NN);:
TT= TT + AM (N N)

2120 L=L+32:IF (L=448 AND NM< >8)
OR (L=352 AND NM =8) THEN PRINT
@465, "scrollE?"; ELSE GOTO 2150

2130 A$ =1NKEY$:IF A$="" THEN 2130
2140 GOSUB 2280
2150 NEXT:IF PT=1 THEN PRINT# -2,

CHR$(13):IF NM< >8 THEN PRINT
-2,TAB(28);:PRINT# -2,USING
"TOTALD ="+ U1$;TT

2160 PRINT@463,USING"total ❑ = " + U1S;TT;
2170 IF NM< >8 THEN 2250
2180 IF PT= 0 THEN 2220
2190 PRINT# - 2,TAB(21);:PRINT# - 2,

USING"TOTAL INCOME ❑ ="+ U1$;TT
2200 PRINT# -2,TAB(16);:PRINT# -2,

USING"TOTAL EXPENDITURE ❑ ="
+ U1$;GT:PR1NT# -2,TAB(35)

2210 PRINT# -2,TAB(26);:PRINT# -2,
USING"BALANCE ❑ ="+ U1$;TT- GT

2220 PRINT@392,USING"total income ❑ ="
+ U1S;TT;

2230 PRINT@419,USING"total
expenditures ="+ Ul$;GT;

2240 PRINT@461,USING"balance ❑ ="+
U1$; TT-GT;

2250 A$=INKEY$:1F A$="" THEN 2250
2260 IF A$< >CHR$(13) THEN 2000
2270 RETURN
2280 L=64:CLS NM:PRINT@(33-LEN(CT$

(NM)))/2,CT$(NM);
2290 PRINT @34,"date";:PRINT@46,

"item";: PRINT@57,"amount";
2300 FOR N=32 TO 416 STEP 32
2310 POKE N +1032,122+ NM*16:POKE

N + 1048,117 + 16 .11M
2320 NEXT:RETURN
3000 CLS:MOTORON:PRINT@65,"POSITION

TAPE THEN PRESS [ENTER]"
3010 A$=INKEY$:1F A$="" THEN 3010
3020 MOTOROFF:PRINT@65,"PRESS

RECORD ON TAPE DOSE ❑❑
SEDSES THEN PRESS [ENTER]"

3030 A$=INKEY$:1F A$=`"' THEN 3030
3040 CLS:PRINT@65,;:INPUT"NAME OF

DATA ❑ ";DA$
3050 OPEN "0", # -1,DA$
3060 PRINT# -1,NU
3070 FOR N=0 TO NU-1
3080 PRINT# -1,DA$(N),TE$(N),AM(N),

CA(N)
3090 NEXT:CLOSE # -1:RETURN
4000 CLS:PRINT@65,;:INPUT"FILE

NAME";DA$
4010 MOTORON:PRINT@64, "POSITION

TAPE THEN PRESS [ENTER]"
4020 A$=INKEY$:IF A$="" THEN 4020
4030 MOTOROFF:GT=0:OPEN "I",

-1,DA$
4040 PRINT@129,"FOUND ❑ ";DAS

4050 INPUT# -1,NU
4060 FOR N=0 TO NU-1
4070 INPUT# -1,DA$(N),TE$(N),AM(N),

CA(N)
4080 IF CA(N) < >8 THEN GT= GT+AM(N)
4090 NEXT:CLOSE # -1:RETURN
5000 CLS:PRINT@65,"DO YOU WANT THE

PRINTER ON CPO ❑ ❑ ❑ ❑ (Y/N)";
5010 A$=INKEY$:1F A$ < >"Y" AND

A$ < >"N" THEN 5010
5020 PRINT" OK":IF A$="N" THEN PT=

0:RETURN
5030 F$="%00000DEIO

%% ❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑❑
%ED + UMPT=1:RETURN

6000 IF NU= 0 THEN RETURN
6010 CLS:PRINT" ❑❑ date"TAB(12)

"item"TAB(22)"amount"TAB(29)"cat"
6020 PRINT@417,"PRESS [DOWN] TO GO

FORWARDD DEDD DOR
[UP] TO GO BACKWARDS."

6030 PRINT@481,"PRESS THE SPACE BAR
TO EDIT.";:M=O:GOTO 6080

6040 IF PEEK (341) = 223 AND M> 0 THEN
M = M -1:GOTO 6080

6050 IF PEEK(342) = 223 AND M< NU-1
THEN M=M+1:GOTO 6080

6060 IF PEEK(345)= 223 THEN 6100
6070 GOTO 6040
6080 PRINT@64,USING"% ❑ ❑ DOD IT1

% ❑ % ❑❑ 000111 ❑❑❑❑

%# # # #.# #0%0111%";
DA$(M);LEFT$(TE$(M),11);AM(M);
LEFT$(CT$(CA(M)),3)

6090 GOTO 6040
6100 IF CA(M) < >8 THEN

GT= GT—AM(M)
6110 INPUT"NEW DATE ❑ ";D$:1F D$=""

THEN 6130
6120 IF LEN(D$) > 8 THEN 6110 ELSE

DA$(M) = D$
6130 INPUT"NEW ITEMO";D$AF D$=""

THEN 6150
6140 TE$(M)= D$
6150 INPUT"NEW AMOUNT ❑ ";A:IF A=0

THEN 6170
6160 IF A<0 OR A>9999.99 THEN 6150

ELSE AM(M) =A
6170 INPUT"NEW CATEGORY171";CalF

CA$="" THEN 6200
6180 GOSUB1180:IF F=0 THEN 6170
6190 CA(M) = NM
6200 IF CA(M) < >8 THEN

GT= GT + AM(M)
6210 RETURN
7000 CLS:PRINT@69,"ARE YOU SURE ❑

(Y/N) ❑ ?";
7010 A$=INKEY$:1F A$< >"Y" AND

A$< >"N" THEN 7010
7020 IF A$="N" THEN RETURN

Can the Dragon and Tandy
produce lower case characters—
such as the letters 'a' to 'z'?
The Dragon can output lower case
characters on a printer, but not on the
screen. This is good news if you have a
printer, because you can print
documents, such as letters or
broadsheets, more attractively using a
mixture of the cases. But even if you
use only a TV set, you can still
distinguish between the cases.

When you switch on the machine, it
is set up automatically in upper case
mode—it gives black capitals on a
green background. To enter lower case
mode, press ISHIFTI and 0 together. This
releases a CAPS lock, so that when the
letters from 'A' to 'Z' are pressed, they
appear in reversed colours—green
capitals on a black background.

All commands to the computer must
be in upper case—`A', for example. A
printer outputs 'A' as upper case 'A' and
reversed 'A' as lower case 'a'. To
return to upper case mode, press

I SHIFT I and 0 together again.

20 PRINT "LT:POKE 53280,0: POKE
53281,0:DIM D$(4,400):CO = 0

30 A$(1) = "HOUSEKEEP1NG":A$(2)=
"ENTERTAINMENT":A$(3) = "RENT &
RATES"

40 A$(8) = "INCOME":A$(4) = "CLOTHING":
A$(5) = "MOTOR1NG":A$(6)= "HOLIDAY"

50 A$(7) = "MISCELLANEOUS"
60 PRINT "pp 	gg"TAB

(13)"a DODD MAIN
MENU ❑ ❑ 1 ❑ ":PRINT TAB(13)
"Uggg1. MAKE AN ENTRY"

70 PRINT TAB(13)"g2. VIEW ENTRIES":
PRINT TAB(13)"gg3. SAVE TO TAPE"

80 PRINT TAB(13)"g14. LOAD FROM
TAPE":PRINT TAB(13)"g15. PRINTER
OPTION"

90 PRINTTAB(1 3)" gg 6. CHANGE ENTRY"
100 PRINT TAB(13)"g17. QUIT PROGRAM":

PRINT TAB(13)"gg gg 	LI ❑
ENTER CHOICE ? ❑ "

110 GET K$:1F VAL(K$) <1 OR
VAL(K$) > 7 THEN 110

120 C$ = "":KK$ = K$:1F K$ ="1" THEN
GOTO 500

130 IF K$ = "2" THEN GOSUB 440:
GOTO 640

140 IF K$ = "3" THEN GOSUB 830:
GOTO 790

150 IF K$="4" THEN GOSUB 830:
GOTO 810

160 IF K$="5" THEN PRINT "0":
GOSUB 600

170 IF K$="6" AND CO <> 0 THEN
C$="Y":CQ=1:QQ$= D$(4,1):
GOT0200

180 IF K$ = "7" THEN PRINT TAB(13);:
INPUT" ❑ ❑ ARE YOU SURE ❑ ❑ ❑

ii"; K$:1FK$ = "Y"THENEND
190 GOTO 60
200 CC= 0:C1 =0
210 PRINT" ❑ gg gr:IFC$ = "Y"THEN

PRINTTAB(12)"a ENTRY
NUMBER"CQ

220 PRINT "gg ErTAB(20— (LEN(A$
(VAL(QQ$)))*.5).)A$(VAL(QQ$))

230 PRINT "ggfiii 	

240 PRINT "0 ❑ E1DATEUD ❑

❑ [0 ❑❑❑❑❑❑❑ 131TEMU
❑❑❑❑❑❑❑ M ❑❑ E1
AMOUNTU"

250 PRINT " 	
	 ": SC=0

260 1FC$="Y"THENC1 = CQ:GOSU B370:
GOT0860

270 Cl =C1 +1:1F D$(4,C1)=QQ$ THEN
GOSUB 370:IF PR$ ="N" THEN
SC= SC + 1

The main menu (this is the Spectrum version) gives you all these options

280 IF SC= >10 THEN SC= 0:GOSUB
840:PRINT "gigggggggggg"

290 IF Cl =400 OR VAL(D$(4,C1))= 0
THEN 310

300 GOTO 260
310 Cl =0:FOR Z=1 TO 8:N(Z)= 0:

NEXT:FR=0
320 Cl =C1 +1:IF Cl = >400 OR VAL(D$

(4,C1)) = 0 THEN RETURN
330 IF VAL(D$(4,C1))=VAL(QQ$)

THEN N(VAL(QQ$)) = N(VAL(QQ$)) +
VAL(D$(3,C1))

340 IF VAL(D$(4,C1))=8 AND VAL
(DDS) = 8 THEN320

350 IF VAL(D$(4,C1)) < >8 THEN FR =
FR + VAL(D$(3,C1))

360 GOTO 320
370 PRINT LEFT(1)(1,C1)+

"111111111111111111111111E10",9)"111";
380 PRINT LEFT$(D$(2,C1)+

"00011=10017111111111111100
❑ ❑❑❑❑ ",18);"111£";

390 W$ = D$(3,C1):TA= 9
400 VV=VAL(VV$):1F VV-1NT(VV)= 0

THEN W$=STR$(VV)+".00"
410 IF M1D$(VV$,LEN(VV$) —1,1) =

"." THEN VV$ = VV$ + "0"
420 PRINT RIGHT$(" ❑❑❑❑❑❑ ❑

❑❑❑❑❑❑❑❑ 0"+VV$,TA)
430 RETURN
440 PRINT "Diggggggggggggg"

TAB(13)"21111111D
CATEGORY ❑❑❑❑ g161":
POKE 198,0

450 FOR Z=1 TO 8:PR1NT TAB(12)Z

":0"A$(Z):NEXT
460 PRINT TAB(13)"gg En1111111ENTER

CHOICE ❑P ❑ "
470 GET K$:IF (VAL(K$) <1 OR VAL

(K$) > 8) AND K$< >CHR$(13) THEN
470

480 IF K$=CHR$(13) AND KK$ = "1"
THEN 470

490 PRINT "D":QQ$= K$:RETURN
500 IF K$=CHR$(13) THEN

CO= CO-1: GOTO 60
510 CO=C0+1:IF CO>400 THEN

CO=400: GOTO 60
520 C1 = CO:D$(1,C1)=""
530 PRINT "ID gg gg":IF C$ < >"Y" THEN

PRINT "PRESS RETURN IN THE
DATE FIELD FOR MENU"

540 INPUT "gg gg gg ❑ ❑ ENTER
DATEU"; D$(1,C1):1F D$(1,C1)=""
THEN K$=CHR$(13):GOTO 500

550 INPUT "gni 	ENTER ITEM J";
D$(2,C1)

560 INPUT "gig ENTER AMOUNTU";
D$(3,C1):GOSUB 440:IF QQ$ < >
CHR$(13)THEN D$(4,C1)=QQ$

570 IF QQ$=CHR$(13) THEN 60
580 IF C$="Y" THEN QQ$=D$(4,CQ):

GOTO 200
590 GOT0500
600 PRINT "g"TAB(5)"Eigggg gg gg DO

YOU WANT TO PRINTOUT? (Y/N)"
610 GET K$:IF K$ ="Y" THEN PR$="Y":

RETURN
620 IF K$="N" THEN PR$="N":RETURN
630 GOTO 600

640 IF K$=CHR$(13) THEN 60
650 IF PR$="Y"THEN OPEN 4,4:CMD 4
660 GOSUB 200:PRINT "El 	
	 61"

670 W$=STR$(N(VAL(QQS)))
680 PRINT TAB(19)"TOTAL ❑ :raf";:

TA= 12:GOSUB 400
690 PRINT "a 	

IF QQ$ < > "8" THEN 720
700 PRINT TAB(7)"gg UTOTAL

EXPENDITURE111:Ei f";:TA = 12
710 VV$ =STR$(FR):GOSUB400:VV$=

STR$(N(VAL(QQ$)) — FR)
720 IF QQ$ = "8" THEN PRINTTAB(17)

"Egg BALANCE111:111£";:TA =12:
GOSUB 400

730 IF PR$="Y" THEN PRINT# 4,
CHR$(13):CLOSE4

740 GOSUB940:K$="2":POKE 198,0
750 GETW$:IF W$= w'THEN750
760 IF W$=CHR$(13) THEN 60
770 IF PR$="Y" THEN GOSUB 440:

GOTO 640
780 GOT0120
790 OPEN1,1,1,NM$:PRINT# 1,CO:FOR

Z=1 TO CO:FOR ZZ=1 TO 4:
PR1NT#1,D$(ZZ,Z)

800 NEXT ZZ,Z:CLOSE1:GOTO 60
810 OPEN1,1,0,NWINPUT#1,CO:FOR

Z=1 TO CO:FOR ZZ=1 TO 4:
1NPUT#1,D$(ZZ,Z)

820 NEXT ZZ,Z:CLOSE1:GOTO 60
830 INPUT "D gip ENTER FILE

NAME61";Nra:PRINT"0":RETURN
840 PRINT TAB(li)"gg gg(© HIT KEY

TO CONTINUE)61":POKE198,0:
WAIT198,1:PRINT"ggjgggligggggr;

850 FOR Z=1 TO 14:PRINT "El EICI ❑
❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑ 1=1 ❑ ❑ ❑ ":NEXT:RETURN

860 PRINT" eigg(,) TO MOVE BACK (.)
TO MOVE FORWARD
1=1111111E0IIIIIIDE11=IgSPACE
BAR TO CHANGE"

870 GET P$:IF P$="" THEN 870
880 IF P$=CHR$(13) THEN 60
890 IF P$ = "LI" THEN 530
900 IF P$="." THEN CQ= CQ +1:

IFCQ> COTHENCQ= CO
910 IF P$="," THEN CQ=CQ-1:

IFCQ<1THENCQ= 1
920 IF P$=","ORP$="."THEN QQ$ =

D$(4,CQ):GOT0200
930 GOTO 870
940 PR1NT"p gg HIT ANY KEY TO

CONTINUEE1110 ❑ El ❑ CI El ❑

VIEWING 	gg PRESS RETURN FOR
MAIN MENU" 1

950 RETURN

From Space Invaders to the latest
arcade games, opponents that shoot
back always add to the challenge.
Here's how to create them and put
them into a complete game routine

Games look much better if you use some of
the high resolution graphics features of your
machine, rather than just the 'block' charac-
ters you've met in this course up till now.
Programs using high resolution graphics will
be more complex than ones using only key-
board characters, but the results are certainly
worth the extra trouble.

Many arcade-type games rely on enemies,
aliens or opponents who fire back instead of
sitting placidly by while you annihilate them.
So this time you'll see a game called Space
Station, suitable for all except the ZX81 and
Vic 20, which will teach you how to program
lines to move an 'alien' round the screen
randomly, and also fire missiles at a target—
the space station.

The player has four shields which he can
use to ward off the marauding alien's missiles.
You can't keep the shields up all the time,
though, because there's only a limited amount
of fuel to power the shields.

To make the game more difficult, not only
is the program designed to move the alien
randomly, but the alien may be made to
disappear into hyperspace and reappear
somewhere entirely different.

As it stands, the game isn't really
complete—no timing or scoring has been
added. But this is easily remedied using the
methods given on pages 97 to 103.

Although the alien is like those in commer-
cial games, the space station is only an outline.
If you want to spend an interesting half hour,
you can redesign it using user defined
graphics as described on page 38—or, for
Commodore 64 owners, sprites as described on
page 151. You should, however, keep within
the area used by our space station. Otherwise it
could overlap the defensive shields, necessitat-
ing much revision.

MI !HI
Type in and RUN the first part of the game:

10 PCLEAR4:PMODE4,1:PCLS
15 SCREEN 1,1
20 DIM AL(6),BL(6),B0(4)
30 DEFFNZ(X) = SGN(X)*SCIR(V*V . X. X/

((127 — AX)*(127 — AX) + (95 — AY) .
 (95 — AY)))

■ THE IDEA OF THE ALIEN
GAME ROUTINE

■ HOW TO DRAW THE GAME
ELEMENTS ON THE SCREEN

■ ADDING MOVEMENT

■ SHIELDS YOUR—PROTECTION
■ MISSILES—THE ELEMENT

OF DANGER
■ PLAYING THE GAME
■ CREATING AN ENDING

40 LET PW = 250
50 FORI = 0T07: READA: POKE1536 +

r 32,A: N EXTI
60 GET (0,0) — (7,7),AL,G
65 GOTO 65
250 DATA 24,126,90,126,126,195,

129, 129

You'll see the alien appear on the screen.
The high resolution graphics are set up by

Line 10. At this stage the screen is switched
on by Line 15 so that you can see how the
program works, but the line will be removed
later on in the development of the complete
alien game.

The arrays into which the alien, the missile
and a blank will be fed are DI Mensioned by
Line 20. Line 30 uses a keyword that you
haven't seen yet. DEFFN is short for 'define
function'. If you have a long mathematical
expression it saves you having to type it out in
full several times in a program. The math-
ematical expression in Line 30 is now called
FNZ and is used later on in the program to
move the missile diagonally across the screen.
Line 40 sets the end of the fuel gauge.

Line 50 draws the alien on the screen by
READing the DATA in Line 250 and POKEing it
on to the top left of the screen. The alien is
`remembered' by the Dragon by the GET in
Line 60. The alien is now in array AL.

Line 65 is also a temporary line. All it does
is keep the screen switched on. And once
again it will be removed later on, when the
rest of the game is added to the program.

DRAWING THE MISSILE
Next add these lines and RUN the program.

70 FOR J = 0 TO 4:READ A:POKE
1536 +J*32,A:NEXTJ

80 G ET(0,0) — (4,4), BO,G
85 GOTO 85
260 DATA 32,112,248,112,32

The missile that will be fired by the alien is
POKEd into the top left of the screen. It
doesn't matter that the missile is being POKEd
on top of the alien, nor that there are still some
bits of alien left, because Line 80 only GETs
the area occupied by the missile and not the
surroundings.

DRAWING THE SPACE STATION
Remove Line 85 by typing 85 I ENTER I and add
these lines. Then RUN the program.

90 LET AX= RND(248) —1: LET AY=
RND(178) +5

100 PCLS
110 CIRCLE(127,95),12,5:DRAW

"BM127,95;C5S48NUNLNDNR"
115 GOTO 115

A random start position for the alien is chosen
by Line 90. Line 100 clears the screen before
Line 110 draws the space station. The DRAW
command at the end of the line draws a cross
on the space station. DRAW will have to wait
until later for a full explanation, but can be
thought of as a succession of LINE statements,
as already explained in BASIC Programming.

DRAWING THE FUEL GAUGE
Remove Line 115 in the same way as you
removed Lines 65 and 85. Add these lines and
more graphic detail will appear on the screen:

120 DRAW"BM131,87;S4D5BD6BLR3D2L3
D2R3BL12R3U2NL3U2NL3BU6U5G4R3"

130 DRAW"BM5,1;L4D2NR4D2BE4BR2D4
R3U4BR5L3D2NR3D2R3BE4D4R3"

140 LINE(25,1) — (PW,5),PSET,BF
145 GOTO 145

Line 120 draws numbers on the space station
which correspond to the shield numbers.
Line 130 displays the word FUEL. Unfortu-
nately, the Dragon cannot display ordinary
keyboard characters on the high resolution
screen, so letters or numbers must be DRAWn.

The full fuel gauge for the shields is
displayed by Line 140. The line uses a quick
method for drawing rectangles. You use LINE
to draw a line from the top left corner to the
bottom right corner. PSET tells the Dragon to
draw the line in buff in this mode and colour
set. BF is short for 'box fill' and fills the
rectangle with the colour used for the original
line. If you want to draw an empty rectangle
use B instead of BF.

The high resolution graphics for the game
are now complete. The rest of the program is
concerned with moving the alien and the
missile and activating the shields.

MOVING THE ALIEN
There are three subroutines to add to the
program. This one is concerned with moving
the alien. Type it in but don't RUN it because
nothing will happen yet.

1000 LEILA = AX:LETLY = AY
1010 IF RND(10) =1 THEN LETAX= RND

(248) — 1: LETAY = RND(178) + 5
1020 LETAX=AX+ RND(15)-8:LETAY=

AY+ RND(15)-8
1030 IF AX>103 AND AX<144 AND

AY > 71 AND AY <112 THEN LETAX= LX:
LETAY= LY

1040 IFAX< 0 THEN LETAX= —AX
1050 IFAX > 248 THEN LETAX = 497 —AX
1060 I FAY < 6 THEN LETAY =12 — AY
1070 I FAY > 184 THEN LETAY = 369 — AY
1080 PUT(LX,LY)— (LX+ 7,LY +7),

BL,PSET
1090 PUT(AX,AY)— (AX + 7,AY + 7),

AL,PSET
1100 RETURN.

The alien is controlled somewhat like the
missile and missile base movement covered on
pages 54 to 59. Line 1000 sets the last
position coordinates equal to the current
position coordinates before the alien is
moved.

So that the alien may suddenly shift
around the screen, Line 1010 chooses a
random number. If the random number is 1,
then the alien jumps to a new screen position.
If the random number isn't 1 a new position
for the alien is chosen between — 7 and + 7
pixels away in the x direction (left to right)
and the same range of distances in the y
direction (up and down)—see Line 1020.

Line 1030 stops the alien overrunning the
space station, while Lines 1040 to 1070 stop

the alien being displayed off the screen.
The alien is blanked out in line 1080 by

PUTing a series of blank graphics over its last
position, and the alien is PUT into its new
position by Line 1090.

Line 1100 RETURNS the program to Line
160—which, incidentally, you haven't yet
entered.

FIRING THE MISSILE
The next subroutine first decides whether to
fire a missile, then sets up the missile's
position on the screen and finally checks
which shield will block the missile.

2000 IFRND(7) < >1 THENRETURN
2010 V= RND(8) + 5:DX = FNZ(127 —AX):

DY = FNZ(95 — AY)
2020 IF DX< =0 AND DY> =0 THEN

LETMA=1:GOTO 2050
2030 IF DX< =0 AND DY< =0 THEN

LETMA=2:GOTO 2050
2040 IF DX> =0 AND DY< =0 THEN

LETMA =3 ELSE LETMA= 4
2050 LETMX = AX: LETMY = AY
2060 PUT(MX,MY) — (MX + 4,MY + 4),

BO,OR
2070 LETAF=1:RETURN

Line 2000 decides whether to fire a missile.
There's a six-to-one chance that it will, but
the program can't fire if a missile is already on
the screen. If a missile isn't to be fired then
the subroutine ends.

Line 2010 sets how large the steps taken by
the missile will be—you could, perhaps, think
of V as velocity, or speed. V is plugged ink

Line 2050 starts the missile's flight from
the alien's position. And Line 2060 PUTs the
missile on the screen before Line 2070 makes
AF =1, which tells the Dragon that a missile
has been fired. The subroutine ends.

The final subroutine is from Lines 3000 to
3070. Type in the lines, but again RUNning
will have no effect.

3000 PUT(MX,MY) — (MX + 4,MY + 4),
BL,PSET

3010 LETMX= MX+ DX:LETMY= MY+ DY
3020 IFMX>110ANDMX<140ANDMY

>79AND MY <108 THEN GOTO 3050
3030 PUT(MX,MY) — (MX + 4,MY + 4),BO,OR
3040 RETURN
3050 IF SH(MA)= 0 THEN GOTO 3070
3060 LETAF= 0:RETURN
3070 CLS:PRINT@256,"BANG..YOUR

SHIELDS WERE DOWN !"

The missile is blanked out by Line 3000. The
missile's new position is worked out by Line
3010. Line 3020 checks if the missile has
reached the shields. If it has then the program
jumps to Line 3050 where there is a check to
see if the right shield is up. If there is no
blocking shield the program finishes w .

 the message BANG ... YOUR SH

TZ—defined in Line 30—in the last part of FI
the line so that the new position of the missile
can be worked out.

Lines 2020 to 2040 find out which quarter
of the screen the missile is in and also which
shield is needed to block the missile—MA is
the missile angle, if you like.

WERE DOWN!
If the missile hasn't yet reached the shields,

Line 3050 PUTs it on the screen at the new
position. Line 3040 ends the subroutine.

This completes the program:

150 SCREEN 1,1
160 IFAF= 0 THEN GOSUB 2000

ELSEGOSUB3000
170 GOSUB1000
180 FOR J=1 TO 4
190 LETPE= PEEK(338+J):IF PW <25

THEN LETPE=255
200 IF 255— PE < > SH(J) THEN

LETSH(J)=1—SH(J):CIRCLE(127,95),
16,5*SH(J),1,(J +2)/4,(J+ 3)/4

210 IFSH(J) =1 THEN LETPW= PW-2

220 NEXT
230 LINE(PW,1) — (PW+ 2,5),PRESET,BF
240 GOT0160

On the Tandy, replace Line 200 with:

200 IF (255 — PE)/16< > SH(J)THEN
LETSH (J) = 1 — SH(J):CIRCLE(127,95),
16,5*SH(J),1(J + 2)/4,(J + 3)/4

Before you RUN the program remove
Lines 15 and 145. Now that you've removed
Line 145 you won't see the screen display
being built up. There'll be a short pause after
the program has been RUN before a complete
screen display appears.

much easier to see what is going on if the game
is split up in this way.

DRAWING THE SCREEN DISPLAY
Type in and RUN these first few lines to see
what the setting for the game looks like:

10 MODE1
20 LETX = RND(1100) + 32:L

(950) + 32

s now switched on by Line P Line 160 checks if a missile has been 111.111r50.
fired. If AF = 0 no missile has been fired, and
the program jumps to the subroutine con-
cerned with firing a missile—the one starting
at Line 2000—or else the program jumps to
the subroutine which moves the missile—the
one starting at Line 3000. Next, the alien is
moved. Line 170 makes the program jump to
the subroutine starting at Line 1000.

The section of program from Lines 180 to
220 is concerned with activating the shields.
Line 190 checks which key is being pressed.
If the key is a number from 1 to 4 Line 2000
will draw the shield, and if any of the shields
are activated Line 210 subtracts from the fuel.

Line 230 draws a black rectangle at the end
of the fuel display, giving the impression that
the fuel supply is going down as PW decreases.

Finally, Line 240 starts the process again.

II
On the Acorn machines the space station
game is divided into two main sections. The
first part draws the screen display and does all
the 'fiddly bits' like setting the initial value of
the variables and defining the UDG charac-
ters. The second part of the program deals
with the action part of the game, such as
moving the alien and firing the missile. It is

30 LETARMED = 1:LETSH = 1 :LETF = 1280
40 DIM C(4)
50 *FX11,1
60 VDU23,224,60,126,219,219,126,

60,90,153
65 VDU23,225,32,78,89,124,62,154,

114,4
70 MOVE0,1000:MOVE1280,1000:

PLOT85,0,1024:PLOT85,1280,1024
80 PRINT "FUEL":VDU5
90 MOVE560,512: DRAW640,592:

DRAW720,512:DRAW640,432:
DRAW560,512

100 MOVE640,592:DRAW640,432:
MOVE560,512:DRAW720,512

110 MOVE592,552:PRINT "4 1":
M0VE592,504:PRINT "3 ❑ 2"

The first few lines mostly just set the vari-
ables. X and Y are the start position of the
alien; ARMED =1 means the alien starts with a
missile (ARMED = 0 means no missile); SH =1
means that the shields are operational (again,
0 means that they are not); and F is the fuel
level. DIM C(4) dimensions the array for the
colour of the four shields and *FX11,1 speeds
up the auto-repeat on the keys—essential for
any game that relies on keyboard input.

Lines 60 and 65 define the UDG charac-
ters for the alien and the missile, although
they are not actually PRINTed out until later in
the program.

The next lines draw the display. Lines 70
and 80 draw the fuel gauge and Lines 90 to
110 draw the space station and number its
sectors 1 to 4. The VDU 5 in Line 80 causes
text to be PRINTed at the graphics cursor. This
makes it easier to PRINT the sector numbers in

exactly the right place—notice how Line 110
moves the cursor to a very precise position
before PRINTing the numbers.

CREATING THE ACTION
The game itself is only 7 lines long! Here it is:

120 REPEAT
130 PROCALIEN
140 PROCSHIELD
150 PROCSHOOT
160 PROCFUEL
170 UNTIL FALSE
180 END

Of course, it takes rather more lines than this
to define each procedure, but you can see that
the structure of the game is very simple
indeed.

Lines 100 and 150 just keep looping
through the list of procedures (UNTIL FALSE
means 'carry on for ever'). PROCALIEN moves
the alien, PROCSHIELD activates the shields
around the space station, PROCSHOOT re-
leases the missiles and detects if you are
protected by the correct shield, and
PROCFUEL measures how much fuel you have
left.

If you try to RUN the program now you will
get a 'No such FN/PROC' error as none of the
procedures have been defined. That is the
next task.

MOVING THE ALIEN
Here are the lines to move the alien:

190 DEF PROCALIEN
200 GCOL0,0:MOVEX,Y:VDU224
210 IF RND(200) =123 THEN X = 640:

Y = 512:GOTO 280
220 LETDX = RND(40) — 20:LETDY = RND

(40) — 20
230 IF X> 1200 THEN DX = —ABS(DX)
240 IF X<10 THEN DX = ABS(DX)
250 IF Y < 50 THEN DY = ABS(DY)
260 IF Y> 950 THEN DY = — ABS(DY)
270 LETX = X + DX: LET Y = Y + DY

each shield to 0—ie, black (an activated shield
is white). Line 330 checks if your shields are
operational—if SH = 0 it means your fuel has
run out and you cannot use the shields.

The next few lines detect the keypress and
turn the colour of the relevant shield to colour
3 (ie, white). Line 410 reduces your fuel by 2
units each time a shield is used—so turn them
on only when you really need to!

Finally, Line 420 draws the four shields. It
draws all four but you see only the white one;
the other three are still black and therefore
invisible. This is a simple way of displaying
the correct shield without a lot of extra and
complicated program lines. But note that if
SH in Line 330 were 0 then all four shields
\\ ould be black.

FIRING THE MISSILES
PROCSHOOT gives the alien a 1 in 30 chance of

280 IF X> 500 AN 71111/1/1"rX < 	Q400.
ANDY< 650 THEN X= RND(1250):
Y= RND (990) + 30:GOT0280

290 GCOL0,2:MOVEX,Y:VDU224
300 ENDPROC

Try RUNning the program now: It will work if
you put in a temporary extra line:

135 GOT0170

But remember to delete this line once you
have seen what the procedure does. Delete it
by typing 135 followed by 'RETURNS.

The alien moves around randomly, taking
very short steps most of the time but occa-
sionally jumping to a different part of the
screen.

Line 220 works out the small random steps
DX and DY, and Line 210 controls the big
jumps across the screen. It only jumps if
RND(200) equals 123. The number 123 is a
dummy number and it could, in fact, be any
number between 1 and 200; it just means
there is a 1 in 200 chance of it turning up. You
can change the numbers to something smaller
if you want the alien to jump about more
often—RND(100)= 50 for example.

Lines 230 to 260 check if the alien is
nearing the edge of the screen and if it is they
make sure that DX and DY are either added on
or taken away to bring it back towards the
centre.

Line 270 adds on the small step, Line 280
makes it jump to a new position if it gets too

near the space station, and Line9 2 11E0 c
yellow graphics and plots the alien. (VDU224
means PRINT CHR$224 which is the code
number given to the alien UDG.)

The only line that hasn't been described so
far is Line 200. This simply blanks out the
previous position of the alien.

ACTIVATING THE SHIELDS
PROCSHIELD is the next procedure on the list:

310 DEF PROCSHIELD
320 LETC(1) = 0: LETC (2) = 0: LETC (3) = 0:

LETC(4) = 0
330 IF SH = 0 THEN GOTO 420
340 LETA$ = IN KEYS (1)
350 "FX15,1
360 IF A$ = "" THEN GOTO 420
370 IF A$ = "1" THEN C(1) = 3
380 IF AS = "2" THEN C(2) = 3
390 IF AS = "3" THEN C(3) = 3
400 IF A$ = "4" THEN C(4) = 3
410 LETF = F— 2
420 GCOL 0,C(1):MOVE640,608:DRAW736,

512:GCOL 0,C(2):DRAW640,416:GCOL
0,C(3):DRAW544,512:GCOL 0,C(4):
DRAW640,608

430 ENDPROC

This displays the shield which you use to
protect your space station from the missiles.
You can protect only one sector at a time and
you activate the shields by pressing one of the
keys 1 to 4.

Line 320 starts by setting the colour of

firing a missile at the space station a
checks whether a missile gets through"
defences. Enter these lines now:

440 DEF PROCSHOOT
450 IF ARMED = 0 THEN GOTO 540
460 IF RND(30) < > 13 THEN GOTO 590
470 LETARMED = 0:LETFX = (624 — X)/15:

LETFY = (528 — Y)/15
480 LETG = X + FX:LETH = Y + FY
490 GCOL3,2:MOVEG,H:VDU225
500 IF G > 624 AND H > 528 THEN S=1
510 IF G > 624 AND H < 528 THEN S=2
520 IF G <624 AND H <528 THEN S= 3
530 IF G<624 AND H > 528 THEN S = 4
540 GCOL3,2:MOVEG,H:VDU225
550 LETG = G + FX:LETH = H + FY
560 IF NOT(G > 584 AND G<684 AND

H > 480 AND H < 580) THEN MOVE
G,H: VDU225:ENDPROC

570 LETARMED = 1
580 IF C(S) = 0 THEN PROCFINISH
590 ENDPROC

Line 450 checks if the alien is armed. If

ARMED equals 0 it means a missile has already
been released so this line jumps to a later part
of the program. Line 460 jumps to the end of
the procedure unless RND(30) =13. The 13 is
a dummy number again like the 123 in Line
210. It gives the alien a 1 in 30 chance of
firing a missile.

Assuming the conditions in Line 450 and
460 are not true then the computer eventually
gets to Line 470. This immediately fires a
missile and then calculates FX and FY which is
how far the missile moves. These are worked
out so that the missile always heads towards
the space station. Line 480 adds this to the
position of the alien to give the position of the
missile—G and H are the missile's coordi-
nates. Then Line 490 plots a yellow missile.

The next four lines work out which sector
the missile is in and they set the variable S to
the number of the sector.

Line 540 blanks out the old position of the
missile, Line 550 adds on another step and
Line 560 PRINTs it at the new position if it is
not near to the space station.

The program gets to Line 570 only when
the missile gets to the base. The alien is
immediately armed again (ARMED =1), and
then it checks the colour of the shield. If the
shield was down—ie, the colour was black—
then the game ends by calling PROCFINISH.
Otherwise the game carries on as normal.

USING UP THE FUEL
PROCFUEL comes next, so type in these lines:

600 DEF PROCFUEL
610 LETF = F — .75
620 IF SH = 0 THEN GOTO 650
630 GCOL0,0:MOVE F+ 10,1000:MOVE

F+ 10,1024: PLOT 85,F,1000:
PLOT 85,F,1024

640 IF F < 131 THEN SH=0
650 ENDPROC

This procedure decreases your fuel, and in

Line 630 rubs out the fuel gauge to show how
little you have left. Remember your fuel
decreases more quickly when your shields are
up—look at Line 410 again.

When the fuel level drops below 131, Line
640 turns off your shields by setting SH to 0.

ENDING THE GAME
If a bomb gets through your defences then
you've lost the game. This is done with
PROCFINISH:

660 DEF PROCFINISH
665 FOR D =1 TO 2000: NEXT
670 VDU4:CLS:PRINT""BANG! YOUR

SHIELDS WERE DOWN"
680 • FX12,0
685 FOR D=1 TO 2000: NEXT
690 *FX15,1
700 END

All it does is to tell you you're dead and reset
various things that were set earlier. The VDU 4
resets the VDU 5 statement. *FX12,0 resets the
auto-repeat on the keys to normal, and
•FX15,1 empties the keyboard buffer that may
be filled with lots of 1s, 2s, 3s and 4s that you
pressed for the shields. In short, it 'tidies
things up' before finally ending the game.

a
The Spectrum program uses several new
features not dealt with in earlier chapters, and
will therefore repay a bit of study—and
experimenting, if you're feeling bold.

As usual, you can check as you go that
everything works if you enter the lines in
stages. This first group will define the alien
and, when RUN, will PRINT him on the screen:

10 BORDER 0: PAPER 0: INK 6:
BRIGHT 1: CLS

20 FOR n = USR "a" TO USR "b" +7:
READ a: POKE n,a: NEXT n

200 LET ax= INT (RND*32)

210 LET ay= INT (RND*21) +1
220 IF ax > 11 AND ax < 21 AND ay > 6

AND ay <16 THEN GOTO 200
490 PRINT INK 4;AT ay,ax;CHR$ 144
800 DATA 60,126,219,219,126,60,90,153,

0,0,24,60,60,24,0,0

Lines 20 and 800 define the alien and his
missile (which is not yet visible). They use the
technique that was explained fully in Machine
Code 2. (FOR n = USR "a" TO USR "b" + 7 ...
POKE n,a means the same thing as FOR n = 0 to
15 ... POKE USR "a" + n,a.)

Lines 200 and 210 start the alien off at a
random position on the screen, and Line 490
PRINTs him. (The PRINT CH R$ 144 in this line
means the same as the PRINT < graphics "a" >
in the earlier article.)

Line 220 looks odd at this stage but, as
you'll see as the program progresses, is the
means of preventing the alien popping up in
the middle of your space station.

For now, you may feel like omitting Line
10, because having your program listing in
yellow on a black screen makes it harder to
read. If you do this, you must remember to
reinstate it later, or Line 640 (explained
below) will not work.

BUILDING THE SPACE STATION
These few lines draw the space station:

110 PRINT AT 10,15;"4121";AT
12,15;"3 ❑ 2"

120 PLOT 132,107: DRAW 25, — 25:
DRAW — 25, — 25: DRAW —25,25:
DRAW 25,25

130 PLOT 107,82: DRAW 50,0:
PLOT 132,57: DRAW 0,50

As it stands, the station is pretty primitive. If
you wish to design and enter a proper one,
you'll need only two program additions:
• An extra line similar to Line 20, but
starting with USR "c" and continuing for as
many letters of the alphabet as the size of your
space station dictates.
• A long, long set of DATA in one or more
extra lines at the end of the program.

PRINTING THE MISSILE
The next job is to PRINT the alien's missile,
and plot its path towards the space station:

150 LET mf = 0
300 IF mf =1 THEN GOTO 400
310 IF RND <.9 THEN GOTO 420
320 LET mf =1: LET my = ay: LET

mx = ax: LET fy =11— my: LET
fx = 16 — mx

330 LET b = 1: IF ABS fy >ABS fx
THEN LET b=2

340 IF b=1 THEN LET sx = SGN fx:
LET sy=SGN fy*ABS (fy/fx)

350 IF b=2 THEN LET sy=SGN fy:
LET sx = SGN fx*ABS (fx/fy)

400 PRINT AT my,mx;" ❑ ": LET
my = my + sy: LET mx = mx + sx:
PRINT INK 5;AT my,mx;CHR$ 145: IF
my>10 AND my<12 AND mx>15 AND
mx <17 THEN GOTO 700

620 IF RND > .9 THEN PRINT AT ay,ax;
"0": GOTO 200

630 IF mf = 0 THEN GOTO 300
650 GOTO 300
700 CLS : PRINT FLASH 1; PAPER 2;AT

10,1;" BANG! 0 Your shields were
down 0 "

This whole section, as you can see from Line
650, is a loop that the computer traverses
several times when the alien appears.

Line 150 sets the whole scene to zero: there
is no missile coming at you—yet.

Line 310 decides whether the alien will fire
a missile at you during this particular loop of
the program (there's a 9 to 1 chance he will).

If there is a missile, Line 320 sets its
starting position (my, mx) at the obvious
place—where the alien is (ax, ay). The middle
bit of Line 400 PRINTs the missile, using
CHR$145 instead of graphics "B".

The piece of program from the latter half of
Line 320 to Line 400 is the crafty bit. What it
does is to take the numbers for the middle of
the space station, and the numbers represent-
ing the alien's current position, then subtract
the latter from the former so that the missile
`homes in' on the space station.

Since some of the numbers involved are
negative (for leftwards and downwards travel)
and some positive (for rightwards and up-
wards travel) you may find it difficult to
follow this block if you do not understand
ABS and SGN, which are covered in a later
chapter. But here are some clues:

The second half of Line 320 deducts the
missile's current position (my, mx) from the
centre point of the space station (screen
position 11, 16) and calls the resulting co-
ordinates fy and fx.

Lines 330 to 350, using ABS and SGN, add
`course correction' factors (sy and sx) to fy and
fx. Line 400 starts by unPRINTing the missile
at its old position. Then it adds the sx and sy
numbers to the old position, ready for the
missile to be PRINTed again, one step closer.

MOVING THE ALIEN
Now that the alien has fired its missile it is
time for him to move on. So add these lines:

420 LET xx = ax: LET yy = ay: LET
m = INT (RND*4)

430 IF m = 0 AND ax <31 THEN LET
xx = ax•+ 1

440 IF m=1 AND ax > 0 THEN LET
xx = ax — 1

450 IF m = 2 AND ay <21 THEN LET
yy = ay + 1

460 IF m = 3 AND ay >1 THEN LET
yy = ay — 1

470 IF xx>11 AND xx< 21 AND yy> 6
AND yy <16 THEN GOTO 490

480 PRINT AT ay,ax;" ❑ ": LET
ax = xx: LET ay = yy 	 •

First the Spectrum decides in which
direction the alien will move.
Once this is done by the ran-
dom number in Line 420, the
purpose of Lines 430 to 460
becomes obvious—they are
conventional movement lines. 't
Line 470 keeps the alien
out of the station.

Line 400 (entered earlier)
records a hit, directing the
program to Line 700 if the
missile hits the middle
of the station. You may
wonder why this line uses >10
and <12, rather than the simpler
11, and >15 and <17, rather than 16.
But remember: although the computer can
only PRINT the alien at a whole number, the
numbers moving him are a series of decimalized
fractions. So the chance of their actually
becoming 11, 16 are remote.

Finally, after about ten loops, Line 620
blots the alien out at its final position on this
loop and starts it again at Line 200.

BUILDING THE SHIELDS
These lines build the shields to ward off the
approaching missile:

140 PLOT INVERSE 1;132,122
500 DIM a(4)
510 LET a$ =1NKEY$: IF a$ = "" THEN

GOTO 600
520 IF a$ ="1" THEN LET a(1) =1
530 IF a$ = "2" THEN LET a(2) =1

540 IF a$ = "3" THEN LET a(3) =1
550 IF a$ = "4" THEN LET a(4) =1
600 DRAW INK a(1)*4, INVERSE 1 — a(1),

40,-40: DRAW INK a(2)*4, INVERSE
1 — a(2), — 40, —40: DRAW INK a(3)*4,
INVERSE 1 — a(3), —40,40: DRAW INK
a(4)*4, INVERSE 1 — a(4),40,40

640 IF ATTR (my,mx) = 68 THEN PRINT
AT my,mx;" ❑ ": LET mf = 0

At first sight there is something odd about
these lines, too. Four shields, but only one
PLOT position to draw the lines from? In fact,
the program uses ink the same colour as the,
background to draw a diamond. OW
you press one of the numbered ,
does one section of the I
change colour •
on the scree g

Meanw ,

Line 640 uses ATR 68—the number for the
colour of the shields—to repel the missile by
unPRINTing if it hits the shield.

CLEANING UP
The remaining lines are very easy to follow.
They set the fuel supply to 100 and make it
dwindle until, in the middle of Line 510
(now amended) the shields become inactive.
Remember to reinstate Line 10:

100 PRINT PAPER 2; INK 6;AT 0,0;
"0 FUEL❑ "

160 LET fu =100
510 LET a$ =1NKEY$: IF a$ = "" OR

fu = 0 THEN GOTO 600
560 LET fu =fu —1
610 PRINT PAPER 3; INK 7;AT 0,6;

The Commodore 64 version of the space
station game uses sprites, information for
which is contained within the large number of
DATA statements near the beginning of the
program, as explained on page 15.

10 POKE 56,100:POKE 55,0: POKE 52,
100:POKE 51,0:CLR

20 DATA0,254,0,3,57,128,7,255,192,0,
16,0,16,56,16,56,84,56,124,146,
124,131,255

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0

120 DATA0,0,16,0,0,24,0,0,20,0,0,20,
0,0,20,0,0,24,0,0,48,0,0,80,0,0,
80,0,0,48,0

130 DATA0,24,0,0,20,0,0,20,0,0,24,0,
0,48,0,0,80,0,0,80,0,0,80,0,0,48,
0,0,16

140 DATA0,0,16,0
210 FOR ZZ= 0 TO 4:POKE 2040+71,

200 +ZZ
220 FOR Z=1T063:READ X:POKE 12799+

(ZZ.64)+Z,X:NEXT Z,ZZ
230 CLR:V=53248:FU=100:POKE 650,255:

POKE 53280,0:POKE 53281,0:
PRINT "Q"

240 POKE V+ 2,145:POKE V+3,120:
POKE V+ 23,250:POKE V+29,250:

I0
POKE V+30,240
250 XX = 31 + INT(RND(1)*210):YY = 60:

DX=1:DY=1:IF RND(1)>.50 THEN
1

YY=180:DY= — DY :

1 260 PRINT "I§I"TAB(14)" El FUEL: El El
00 11111111" FU

IFRN D(1) > .90THENXX = 31 + INT(RND
(1)*210):YY =60:DX= 1:DY = 1
 XX=XX+ DX: IF XX= <30 OR
XX= >245 THEN DX= —DX

',330 YY=YY+ DY:IF YY= <50 OR
' YY= >190 THEN DY = — DY

340 POKE V,XX: POKE V +1,YY:IF F=0
THEN F =1:FX= XX:FY= YY

350 IF F=1 THEN GOSUB 410
360 GET A$: S$ = "":SH = 0
370 IF A$ ="4" OR A$ = "2" THEN SH =1:

POKE 2043,204:S$=A$
380 IF A$ = "1" OR A$="3" THEN SH =1:

POKE 2043,203:S$ = A$
390 IF SH =1 THEN 470
400 POKE V+ 21,247:GOTO 260
410 IF FX>153 THEN FX= FX-5
420 IF FX <153 THEN FX = FX+ 5
430 IF FY<135 THEN FY= FY+5
440 IF FY > 135 THEN FY= FY-5
450 POKE V+ 4,FX:POKE V+ 5,FY:IF PEEK

(V+ 30) =246 THEN 550
460 RETURN
470 IF S$ ="4" THENL1 =118:L2=120
480 IF S$ = "2" THENL1 =175:L2=120
490 IF S$ = "1" THENL1 =145:L2=95
500 If S$ = "3" THENL1 =145:L2=145
510 POKE V + 6,L1:POKE V + 7,L2:

FU= FU —1:POKE V+21,255:
IF FU <OTHEN 540

520 IF PEEK(V+ 30) =252 THEN F=0:
GOTO 240

530 GOTO 260
540 PRINT TAB(4)"ggAyou HAVE RUN

OUT OF FUEL !":GOTO 560
550 PRINT TAB(11)"gggyou'vE BEEN

HIT !"

560 FOR ZZ=1T010:FOR T=1 .10100:
NEXT:POKE V+ 21,247:FOR T=1T0100:
NEXT:POKE V+21,0

570 NEXT:PRINT "El"TAB(12)"gg gg gg gg
!Ogg gg maHIT

SPACE BAR"
580 GET XS:IFX $ < >"III" THEN 580
590 RUN 230

The first line of the program reserves some
space for the sprite in the Commodore's
memory, so that the BASIC program you use
to move and operate the sprite cannot corrupt
the sprite program itself.

Lines 20 to 140 contain the sprite inform-
ation for the space station, shields, missiles
and alien. Lines 210 and 220 set the sprite
pointers and put the sprite DATA into memory.
Each sprite occupies 64 bytes (3 times 21, plus
one extra) and there are five of them—this
explains the significance of these values in
these two program lines.

The next two lines initialize the computer,
setting the variables, the various sprite po-
sitions, auto-key repeat, and colours.

The program continues in Line 250 by
creating a random position for the alien sprite,
appearing along one line at the top or one line
at the bottom depending on the value ob-
tained by the RND function.

The program is seen to start in Line 260
with the screen display off, to begin with, the
fuel remaining and the alien. This dispatches
a missile and then moves off. Lines 360-400
activate the space station shields depending
on which of the keys 1, 2, 3 and 4 is being
pressed. If any of the shields is on, the
condition in Line 390 is satisfied and the
program jumps to the routine in Lines
470-530 which controls the location of the
relevant shield sprite.

All the time the missile is homing in on its
target, in a routine spanning Lines 410-460.
If the missile sprite succeeds in reaching the
centre of the space station without
interruption—in other words, if a sprite colli-
sion is not detected in Line 520—the con-
dition in Line 450 is satisfied. The game-end
routine in Lines 540 onwards starts by dis-
playing a message then flashes the screen
display before offering you another go.

Each time the screen is activated, the fuel
counter—variable FU—is decreased. The em-
bedded cursor-left controls of the fuel display
PRINT statement in Line 260 backspaces the
cursor, effectively wiping out the previous
fuel figure before adding the new value of FU
each time the program returns to this point.
When the value of FU is less than 0, in Line
510, a branch to the relevant part of the game-
end routine is made.

P56rl

44, 56,18,184,16,58,144, i„131,255,130,254,84,254,252,
,126,0,56

40 DATA0,0,40,0,0,56,0,1,199,0,6,16,
192,1,199,0,0,124,0

50 DATA0,0,0,127,255,254,64,0,2,64,
0,2,64,16,2,64,48,2,64,16,2,64,
16,2,80,56

60 DATA114,84,0,18,94,0,114,68,0,66,
68,56,114,64,8,2,64,56,2,64,8,
2,64

70 DATA56,2,64,0,2,64,0,2,127,255,
254,0,0,0

80 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,8,0,0,42,0,0,20,
0,0,42,0,0

90 DATA42,0,0,73,0,0,8,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

100 DATA0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,3,3,0,4,132,
128,255

110 DATA255,255,72,72,68,48,48,56,0,

Race track statistics, names and
dates—handling records like these is
where the computer excels. And one
of the most effective tools for
processing them is the array

Arrays are the computer programmer's
method of handling large amounts of closely-
related information—for example, long lists
of club members with their addresses and
subscriptions, complex financial records, and
even lists of characters, weapons or treasure
for an adventure game.

To store individually each piece of inform-
ation in such a long list, you could enter a
massive number of LET statements. But this
would create a long program and a lot of
typing.

What the array does is to store the inform-
ation in a far more compact form. Instead of
having a different variable for each item of
information, you use a common one—A, say.
And to differentiate between each item, you
merely use a figure (or sometimes letter) in
brackets. So the first item is called A(1), the
second A(2), the third A(3) and so on.

Not only does the array make your storage
system more compact, but it also allows you
to change any item—a new telephone num-
ber, for example—with an absolute minimum
ftrouble.

SETTING UP AN ARRAY
Before you can use an array, you have to tell
the computer how big it will be, so that it can
reserve enough space in its memory. This is
done with the DIM (for 'dimension') state-
ment, as in this line:

[13 	

10 DIM A(3)

S5
On the ZX81, use capital A.

10 DIM a(4)

This tells the computer that this particular
array will have four elements, or variables. On
Acorn, Commodore, Dragon and Tandy ma-
chines, they will be numbered from A(0) to
A(3). On the Sinclairs which do not accept
a(0), they will be numbered from a(1) to a(4).

The number of elements you use can be
almost as large as you like—thousands,
maybe. You need not actually use all the
elements you reserve, so it is usually wise to
overestimate. But bear in mind that the
memory space thus reserved will no longer be
available for other variables, so do not overdo

•■litishifigiaill et an 'out of memory' report.

ASSIGNING THE VALUES

The next job is to assign values to each
element. If, for example, the variables repre-
sented the screen positions at which text or a
graphic were to be PRINTed, the next line
might look like this:

NC WA
20 LET A(0) = 0: LET A(1)=2:

LET A(2)=10: LET A(3)=20

20 LET a(1) = 0: LET a(2) =2:
LET a(3) =10: LET a(4) = 20

20 LET A(1) = 0
30 LET A(2) = 2
40 LET A(3)=10
50 LET A(4) = 20

So far, this represents no saving of time or
memory space—in fact, the program is a bit
longer than if you had used ordinary LET
statements. But look what happens when you
have values which are different each time the
program is RUN:

■ SETTING UP AND USING
AN ARRAY

■ THE DIM STATEMENT
■ ASSIGNING VALUES
■ HANDLING NAMES

■ HOW TO USE DATA IN
AN ARRAY

■ ANALYSING THE INFORMATION
■ THE USE OF ARRAYS IN

GAMES PROGRAMS

El 41 II
10 DIM A(3)
20 PRINT "What are the values?"
30 INPUT A(0), A(1), A(2), A(3)

a
10 DIM a(4)
20 PRINT "What are the values?"
30 INPUT a(1),a(2),a(3),a(4)

a
10 DIM A(4)
20 PRINT "WHAT ARE THE VALUES"
30 INPUT A(1)
40 INPUT A(2)
50 INPUT A(3)
60 INPUT A(4)

Each time you RUN the program, the com-
puter will ask what values each variable is to
have this time. And all you need to do is to
type a number (followed, of course, by ENTER I
or 1RETURNI) each time it asks.

And when you have really large

numbers of elements, the time saving is really
worthwhile. Suppose, for example, you
wanted to enter a hundred numbers. This
simple program would be all you'd need:

EINCE4
10 DIM A(99)
20 FOR N=0 TO 99
30 INPUT A(N)
40 NEXT N

On the ZX81, type entirely in capitals.

10 DIM a(100)
20 FOR n=1 TO 100
30 INPUT a(n)
40 NEXT n

HANDLING NAMES

The type of array described so far lets you
handle numbers only. If you want to handle
names and numbers, you must set up two
arrays: one for the names and the other for the
numbers. The names array on three of our
machines would look like this:

10 DIM A$(5)

On the Spectrum, it is also necessary to
specify the maximum length that a name can
be. So if your largest name were to have 10
characters, the names array would look li
this:

a a
On the ZX81, use capitals.

10 DIM a$ (6,10)

In each case, the computer has reserved
memory space for six names or six labels. To
set up the INPUT loop, type:

RIX El MI !HI
20 FOR N= 0 TO 5
30 INPUT A$(N)
40 NEXT N

0 0
On the ZX81, type entirely in capitals.

20 FOR n=1 TO 6
30 INPUT a$(n)
40 NEXT n

RUN the program and enter each name or
letter, followed by 'ENTER or RETURN . Then
verify it by adding the following line and
re R U Nning:

El NC
35 PRINT A$(N)

a a
On the ZX81, type this in capitals.

35 PRINT a$(n)

Even if the names are long, it is not difficult to
type in six of them. And it is still quite quick,
even if you have a hundred names.

Suppose, for instance, you were carrying
out a survey of a racing circuit and you wished
to store the names of the corners and the
number of crashes that ocurred at each one
during a racing season. You might easily need
to enter a couple of dozen corners. And other
examples may require even more entries than
this. But the principle is the same as in the
following program to enter just six. This
method gets the computer to READ a store of
DATA and so cannot be used on the ZX81,
which does not have this facility:

C BOO
10 DIM A$(5)
20 FOR N=0 TO 5
30 READ A$(N)
40 NEXT N
50 DATA FIVE MILE, WELL PASS, BROOK

HILL, PETERS ROAD, CROSSWAYS,
ROWLANDS

10 DIM a$(6,11)
20 FOR n=1 TO 6
30 READ a$(n)
40 NEXT n
50 DATA "FIVE MILE", "WELL PASS",

"BROOK HILL", "PETERS ROAD",
"CROSSWAYS", "ROWLANDS"

The names are read from the DATA statements
in Line 50 and stored into the array at Line
10. So each time the program is RUN, the
same names are entered automatically. If you
had 100 junctions, you would change Line 10
to DIM A$ (99) and Line 20 to FOR N = 0 TO 99
(for Acorn, Dragon, Tandy or Commodore) or
DIM a$(100,11) and FOR n=1 TO 100 (for
Spectrum). Then you would add the other 94
junctions to the DATA statement.

Next, you could set up an array to hold the
numbers of accidents:

• 	AA
60 DIM A(5)
70 FOR N= 0 TO 5
80 READ A(N)
90 NEXT N
100 DATA 0, 2, 5, 1, 3, 6

60 DIM a(6)
70 FOR n=1 TO 6
80 READ a(n)
90 NEXT n
100 DATA 0,2,5,1,3,6

If you like, you can ignore the zero element of
an array on the Acorn, Commodore, Dragon
and Tandy. So in the last example you can
write DIM A$(6) and then number the items
from 1 to 6. It means A$(0) is empty, but it is
more natural to count from 1 rather than 0.

USING ARRAYS
The computer now knows how many acci-
dents occurred at each bend. But how can this
information be manipulated?

The first thing you might want the com-
puter to do is PRINT a list of all the bends and
number of accidents—if only to check that
you have keyed them in correctly. Type in the
following:

MI II
210 FOR N=0 TO 5
220 PRINT A$(N), A(N)
230 NEXT N

a
210 FOR n =1 TO 6
220 PRINT a$(n), a(n)
230 NEXT n

Lines 210 and 230 loop through the list, while
line 220 PRINTs out the names and numbers
stored in the arrays. If you find you've made a
mistake then correct it now.

When you come to analyse the results of
the survey, you will want to answer questions
such as 'How many crashes were there in all?'
and 'Which are the safest corners?'. The lines
to find the total number of accidents might
look like this:

300 PRINT" 0 "

310 LET TL= 0
320 FOR N=0 TO 5
330 LET TL=TL+A(N)
340 NEXT N
350 PRINT"TOTAL NUMBER OF

ACCIDENTS El ";TI_

300 CLS
310 LET total= 0
320 FOR N=0 TO 5
330 LET total = total + A(N)
340 NEXT N
350 PRINT "Total number of

accidents: ❑ ";total

Ng III
300 CLS
310 LET TL= 0
320 FOR N= 0 TO 5
330 LET TL=TL+A(N)
340 NEXT N
350 PRINT "TOTAL NUMBER OF

ACCIDENTS El ";TL

300 CLS
310 LET total = 0
320 FOR n=1 TO 6
330 LET total = total + a(n)
340 NEXT n
350 PRINT "Total number of

accidents: ❑ ";total

ANALYSING INFORMATION
Imagine how useful the few lines above would
be if you had a road system with 100 or even
1000 bends, instead of just six.

And when you consider that the inform-
ation in an array can not only be stored, but
just as easily analysed, you'll see why the
array is such a powerful tool—in everything
from household budgeting (see pages 136 to
143) to international finance. For an example
of such analysis, type in these extra lines.

Si ®B MI 'HI
400 FOR N= 0T0 5
410 IF A(N) >3 THEN PRINT A$(N),A(N)
420 NEXT N

a
400 FOR n=1 TO 6
410 IF a(n) > 3 THEN PRINT a$(n),a(n)
420 NEXT n

These lines PRINT a list of corners at which
more than three accidents have occurred. In
our example of six corners, these are BROOK
HILL and ROWLANDS. If you change the
3 in Line 410 to 5 and RUN the program again,
ROWLANDS is PRINTed. (Any number
greater than 6, the largest value, would cause
nothing to be PR I NTed.)

The information stored in the arrays could
just as easily be a list of families in a town,
together with statistics such as number of
children, income bracket and number of cars.
Once these have been entered, they can be
sorted into groups. You can even ask the
computer to find a single name—even if you
can remember only the initial letter. To show
how this would work add these lines to the
program:

liCE la NCIli
600 FOR N = 0 TO 5
610 B$ = A$(N)
620 IF LEFT$(B$,1) = "P" THEN PRINT B$
630 NEXT N

a
600 FOR n=1 TO 6
620 IF a$(n,1)="P" THEN PRINT a$(n)
630 NEXT n

Lines 600 and 630 set up the loop to look at
each element of the array. As each name is
read, Line 620 checks the first character and if
it is a `P' then the whole name is PRINTed.

In this case, it is PETERS ROAD that
is PRINTed because it is the only junction
beginning with 'P'. In a 'list of families'
program, it could just as easily be all the
Smiths, or everyone with more than one car.
And with multi-dimensioned arrays, the sub-
ject of the next article on arrays, you can
cross-index too—for example, you can find the
entry for everyone whose name starts with 'A',
who lives at street number 21 and whose dog is
an alsatian!

ARRAYS FOR GAMES
Adventure games are one case where the array
really comes into its own. Invariably, an
adventure includes a number of locations, or
scenes that the player visits. At each location,
instructions are PRINTed on the screen to guide
the player through the game. All these loc-
ations are related, so they are best stored in a
string array—A$ followed by a number, for
example A$(9).

The routes the player chooses to each
location, such as 'north', fit well into a second
string array; the objects, such as 'torch' and
`key', into a third; the verbs, such as 'take',
`kill' and 'dig', into a fourth.

At some locations, the player can collect
objects, such as gold coins, which count
towards the final score. These objects are
stored in one numeric array— 'A' followed by
a number, such as A(7)— and the number of
objects the player is carrying in another.

In essence, then, a text-only adventure
consists of a number of arrays which are
manipulated by the program.

The development of adventure games
needs a whole series of articles. This will be
covered in Games Programming. But in the
meantime, here is an example:

Ell Vil Iii
10 LET G=14
20 DIM A$(G),A(G)
30 FOR Z=1 TOG
40 READ A$(Z)
50 LET A(Z) = Z
60 NEXT Z
70 FOR X= G TO 2 STEP —1
80 LET Q= RND(X)
90 LET T=A(X):LET A(X)= A(Q):

LET A(Q) = T
100 NEXT X
110 FOR T=1 TO G:PRINT "ROOM III ";

T;" ❑ HAS A Ili ";A$ (A ❑ (T)): NEXT T
120 DATA ROPE,SWORD,SPANNER,

KNIFE,GUN,KEY,TORCH,CAR,
WHIP,WAND,BOMB,BOOK,MODEL
SHIP,ROBOT

1K KK
10 LET G =14:PRINT CHR$(147)
20 DIM A$(G),A(G)
30 FOR Z=1 TOG
40 READ A$(Z)
50 LET A(Z) = Z
60 NEXT Z
70 FOR X = G TO 2 STEP —1
80 LET Q= INT(RND(1)*X) +1
90 LET T=A(X):LET A(X)= A(Q):LET A(Q) = T
100 NEXT X
110 FOR T=1 TO G:PRINT "ROOM";

T;"HAS A D ";A$(A(T)):NEXT T
120 DATA ROPE,SWORD,SPANNER,

KNIFE,GUN,KEY,TORCH,CAR,
WHIP,WAND,BOMB,BOOK

130 DATA MODEL SHIP,ROBOT
v.,

,.. , .

10 LET g =14
20 DIM a$(g,10): DIM a(g)
30 FOR z=1 TO g
40 READ a$(z)
50 LET a(z) = z
60 NEXT z
70 FOR x = g TO 2 STEP —1
80 LET q = INT (RND*x) +1
90 LET t = a(x): LET a(x) = a(q):

LET a(q) =t
100 NEXT x
110 FOR t=1 TO g: PRINT "RoomIII";

t;" ❑ has all1";a$(a(t)): NEXT t
120 DATA "rope","sword","spanner",

"knife","gun","key","torch",
"car","whip","wand","bomb",
"book","model ship","robot"

Line 20 sets up a string array and a numeric
array. Line 40 reads a list of objects, and Line
50 labels rooms. Lines 70 to 100 assign an
object randomly to each room, and Line 110
PRINTS the result.

No sooner have you learnt to count
on one finger than you have to learn
to count on 16! But even if you
don't have sixteen fingers you will
find handling hex much easier than
coping with chains of Os and 1s

Though deep in their circuits computers do
all their arithmetic in binary, using a number
system composed entirely of Os and Is creates
certain difficulties for human operators.

Reasonably-sized numbers soon end up
with more noughts than a doughnut factory.
And long series of Os and ls are not easy to key
in. It is very easy to make a mistake and very
difficult to spot one.

The way round this is for the operator to
use a number system with yet another base.

Hexadecimal—or hex—numbers are num-
bers to the base 16. These are close enough to
decimal, or ten-based, numbers to make them
relatively easy for a human to handle.

Further, 16 is 2 x 2 x 2 x 2, which means
that conversion between binary and hex is
simple. Decimal 16 is 10 in hex and 10000 in
binary. And every number from 0 to 15 is
represented by a four-digit binary number.

To use a number system with a base bigger
than ten you have to define new digits.

In hex, ten is represented by A, eleven by
B, twelve by C, thirteen by D, fourteen by E
and fifteen by F.

BINARY-HEX CONVERSION
To convert into hex the eight-bit binary
numbers that home computers use is parti-
cularly easy. You break the number into two
four-digit strings. Then, as explained on
pages 38 and 39, the first four digits translate
directly into one hex digit, and the last four
into another hex digit.

Translating decimal into hex is more dif-
ficult. To do this you divide the decimal
number successively by 16. The remainders
after each division give the hex digits

For example, when you divide 1226 by 16
you get 76 with 10 left over. 10 is A in hex. 76
divided by 16 is 4 remainder 12. 12 is C in
hex. And 4 divided by 16 is 0 remainder 4. So
1226 in decimal is 4CA in hex.

■ WHY HEXADECIMAL IS USED
■ COUNTING IN 16S
■ THE RELATIONSHIP

BETWEEN HEX AND BINARY

■ EASY CONVERSION
FROM BINARY TO HEX

■ CONVERTING FROM
DECIMAL TO HEX

The following program is quite long, but is
worth keying in because it will help establish
in your mind how this conversion works:

a
20 CLS
25 PLOT 140,0: DRAW 0,160
30 PRINT INVERSE 1;AT 0,8;"E BIN,

DEC, HEX ❑ "
40 PRINT INVERSE 1;AT 4,2;

"EE BINARY:0 0 EDO"
50 PRINT INVERSE 1;AT 9,2;

"00 DECIMALEEE0"
60 PRINT AT 10,5;"+ 0011I+

❑❑❑ + ❑❑❑ + ❑❑❑ +
❑❑❑ + ❑❑❑ +"

70 PRINT INVERSE 1;AT 17,2;
"111111HEXADECIMAL:"

80 PRINT AT 18,4;"+ ID 0+
❑❑ + ❑❑ ="

90 PRINT AT 18,20;"+ 00+
❑❑ + ❑❑ ="

100 LET no= 0
110 GOTO 150
120 LET a$ = INKEY$: IF a$="" THEN

GOTO 120
130 IF a$=" ❑ " THEN LET no=no+1: IF

no = 256 THEN LET no= 0
135 IF a$="b" THEN LET no= no-1: IF

no= —1 THEN LET no = 255
140 IF a$="b" OR a$ = "El" THEN GOTO

150
145 INPUT "?";no
150 GOSUB 170: GOSUB 250
160 GOTO 120
170 LET nu = no: LET c =128
175 FOR x=0 TO 7
180 LET n= 0: IF nu> =c THEN LET n=1:

LET nu= nu —c
190 LET c= c/2
200 PRINT AT 5,2 +4*x;n
210 IF n=1 THEN PRINT AT

10,2+ 4*x;c*2
220 IF n=0 THEN PRINT AT

10,2+ 4*x;"0171
230 NEXT x
235 PRINT AT 13,6;"DECIMAL

TOTAL= D";no;" 171171"
240 RETURN
250 LET hi= INT (no/16): LET hh= hi
260 LET lo= (no— hi*16): LET II= lo:

IF lo>9 THEN LET Io=Io+7
265 IF hi>9 THEN LET hi=hi+7
270 LET hi = hi+ 48: LET lo= lo+ 48
280 PRINT AT 18,14;CHR$ hi;AT

18,30;CHR$ lo
290 LET c= 8
300 FOR x=0 TO 3
310 LET n=0: IF hh> =c THEN LET

n=c: LET hh= hh—c
315 LET m=0: IF II> =c THEN LET

m=c: LET II= II— c
320 LET c = c/2
330 PRINT AT 18,2 + xl;n;AT

18,18+ x*3;m
340 NEXT x
400 PRINT AT 21,6;"HEX TOTAL= ❑ ";

Instant conversions
The BBC B, Acorn Electron, Dragon and
Tandy computers have inbuilt programs
to do decimal-to-hex conversions. To get
a hex number, all you need to do is:

Type PRINT—, followed by the decimal
number you want. Then press 'RETURN I.

tgi
Type PRINT HEX$, followed in brackets
by the decimal number you want
converted—eg PRINT HEX$ (255)—then
press R ETU R N

If, on the other hand, you want to
enter hex numbers as part of a program
(when entering DATA statements, for
example), these machines will accept
them quite happily. On the Acorn ma-
chines, you must type & before the hex
number; on the Dragon and Tandy, you
must type &H before the number. The
computers will then convert the hex into
decimal for use during their subsequent
calculations.

CHR$ hi;CHR$ lo
500 RETURN

a
20 CLS
30 PRINT AT 0,9;"BIN, DEC, HEX"
40 PRINT AT 4,4;"BINARY:"
50 PRINT AT 9,4;"DECIMAL:"
60 PRINTAT10,9;"+ EEO +ODD

+CILIC1+01=10+ ❑❑
+LIDO

70 PRINT AT 17,4;"HEXADECIMAL:"
80 PRINT AT 18,4;" +00+1=10

+E0="
90 PRINT AT 18,20;"+ 	+

+ ❑❑ ="
100 LET NO=0
110 GOTO 150
120 LET A$=1NKEY$
125 IF A$="" THEN GOTO 120
130 IF A$< >"F" THEN GOTO 135
131 LET NO= NO + 1
132 IF NO=256 THEN LET NO=0
135 IF A$< >"B" THEN GOTO 140
136 LET NO = NO1
137 IF NO= —1 THEN LET NO=255
140 IF A$="8" OR A$="F" THEN

GOTO 150
145 INPUT NO
150 GOSUB 170
155 GOSUB 250
160 GOTO 120
170 LET NU= NO
171 LET C=128
175 FOR X=0 TO 7
180 LET N=0
185 IF NU> =C THEN LET N=1
186 IF NU> =C THEN LET NU=NU—C
190 LET C= C/2
200 PRINT AT 5,2+ 4*X;N
210 IF N=1 THEN PRINT AT 10,2+4*X;

C*2
220 IF N=0 THEN PRINT AT 10,2+4*X;

"OD 0"

230 NEXT X
235 PRINT AT 13,6;"DECIMAL TOTAL

= El";NO;"El=1"
240 RETURN
250 LET HI =INT(N0/16)
255 LET HH= HI
260 LET LO= (NO— (HI*16))
261 LET LL= LO
270 LET HI= HI + 28
275 LET LO -= L0+28
280 PRINT AT 18,14; CHR$ HI;

AT 18,30; CHR$ LO
290 LET C=8
300 FOR X=0 T03
310 LET N=0
311 IF HH> =C THEN LET N=C
312 IF HH> =C THEN LET HH=HH—C
315 LET M=0
316 IF LL> =C THEN LET M=C
317 IF LL> =C THEN LET LL= LL—C
320 LET C= C/2
330 PRINT AT 18,2 +X*3;N;AT 18,18 +X*3;M
340 NEXT X
400 PRINT AT 21,6;"HEX TOTAL= ❑ ";

CHR$ HI; CHR$ LO
410 GOSUB 145
500 RETURN

El
10 MODE6
20 VDU23;8202;0;0;0;
30 PRINTTAB(13,2)"BIN, DEC, HEX"
40 PRINTTAB(13,3)STRING$

(13,CHR$(224))
50 PRINTTAB(5,12);" +DOD+0 CIO +

+ 1110111+111111111+
EDE +111111111="TAB(5,17)"+
000+0 ❑❑ + ❑❑ =
❑❑❑❑ D ❑ D+ ❑❑❑ + ❑❑❑

+ ❑❑ ="
60 PRINTTAB(1,5)"Binary ❑ :"TAB(1,10)

"Decimal ❑ :"TAB(1,15)
"Hexadecimal ❑ :"TAB (12,20)
"Hex Numbed❑ ="

70 ?&70 = 0
80 T=?&70:PROCBIN:PROCDEC:

PROCHEX
90 *FX21,0
95 G = GET
100 IF G =32 THEN?&70 =?&70 + 1:

GOT080
105 IF G=66 THEN?&70=?&70 —1:

GOT080
110 PRINTTAB(0,23);:INPUT?&70:

PRINTTAB(0,23)STRING$(39," ❑ ");:
GOT080

120 DEF PROCBIN
130 FOR X=0 TO 7
140 IF — (T AND 2 A X) THEN PRINTTAB

(34—X*4+ (X> 3)1,7)"1"TAB(34 —
X*4 + (X> 3)1 + (X> 6),12);(T AND

How do I convert from hex back
into decimal?
Each successive digit of a hex number is
worth 16 times the digit to its right. So
to convert a hex number like F6DA into
decimal, you take the righthand digit
and convert it into decimal notation. A is
10. The next digit to the left is worth 16
times more, so it must be converted into
decimal notation and multiplied by 16.
D is 13. 13 x 16=208. The next digit to
the left is worth 16 times more again.
6 x 16 x 16=1536. And the last digit in
this case must be multiplied by yet
another 16. F is 15. 15 x 16 x 16 x 16
=61440. So F6DA in hex is 10+208
+1536+61440 or 63194 in decimal.
Otherwise use the program here to
convert the hex two digits at a
time. Then multiply the left-
hand pair by 256.

2 A X) ELSE PRINTTAB(34— X*4 + (X> 3)
*2,7) "0"TAB(34 — X*4 + (X > 3)*2 —
2,12); "E ❑ 0"

150 NEXT X
160 ENDPROC
170 DEF PROCHEX
180 FOR X=4 T07
190 PRINT TAB(31—X*4,17);(T AND

2 A X)/16
200 NEXT
210 FOR X=0 T03
220 PRINTTAB(34—X*4,17);(T AND 2 A X)
230 NEXT
240 X= (T AND 240)/16
250 A$= CHR$(X+ 48 — 7*(X> 9))
260 PRINTTAB(18,17);A$
270 X= (T AND 15)
280 B$ = CHR$ (X + 48 — 7* (X > 9))
290 PRINTTAB(37,17);B$
300 PRINTTAB(26,20)A$+ B$
310 ENDPROC
320 DEF PROCDEC
330 PRINTTAB(37,12);T" 	"
340 ENDPROC

20 PRINT "0"CHR$(8):FOR Z=1 TO
8:READ A(Z):NEXT Z:DATA 128,64,
32,16,8,4,2,1

30 K$="0123456789ABCDEF":POKE 650,
255: POKE 53280,0:POKE53281,0

40 PRINT "Egl"TAB(13)"01BIN,DEC,HEX"
50 PRINT TAB(13)

"A 	

60 PRINT "ggggggiggBINARYL:gg"
70 PRINT "ggggggmDECIMALL:gg"
80 PRINT "13 gi gMHEXADECIMAL

IL:g1"
90 pRINT"gpgggggggiggg":

V$="": FOR Z=1 TO 8:V$ = V$ + LEFT$
("0" + STR$(B(Z)) +" ❑ ❑ ",4):NEXT Z

100 PRINT M1D$(V$,3,14)" ❑ ❑ "
R1GHT$(V$,16)

110 PRINT "gggigg": V$="":FOR Z=1
TO 8

120 V$ =V$+ LEFTS(" + " + RIGHTS
(STR$(D(Z)),LEN(STR$(D(Z))) — 1) +
"El ❑ ❑ ",4):NEXT Z

130 PRINT M1D$(V$,2,15);" ❑ ❑ 0";
M1D$(V$,18,16)" =0000111M
IV;

140 PR1NTD(1)+ D(2) + D(3) + D(4) +
D(5) + D(6) + D(7) + D(8)

150 PRINT "gggigg":\/$="":FOR Z=1
TO 8

160 V$ = V$ + LEFT$("+"+ R1GHT$(STR$
(H(Z)),LEN(STR$(H(Z))) —1) +
"0 ❑ ❑ ",4):NEXT Z

170 X1$= M1D$(K$,H(1)+ H(2) + H(3) +
H(4) +1,1):X2$= MID$(K$,H(5) + H(6) +
H(7) + H(8)+1,1)

180 PRINT MID$(V$,2,15);"1i -
4"x1s"L ❑ ❑ ";M1D$(V$,18,16);
"= ❑ g"X2$

190 pRINT,"gggigg
TOTALE:LI OD 0 El El
1111111111 „
; xis+ X2$

200 GET A$:IF A$="" THEN 200
210 POKE 198,0:IF A$=" ❑ " THEN

A=A+1:IF A>255 THEN A=0
220 IF A$="B" THEN A=A —1:1F A<0

THEN A=255
230 IF A$< >"D" AND A$< >"B"

THEN 350
240 AA=A
250 FOR Z= 1T0 8:1F A(Z) < =AA THEN

B(Z) = 1:D(Z) = A(Z):AA = A(Z):
GOTO 270

260 B(Z)=0:D(Z)=0
270 NEXT
280 FORZ=1T04:1FB(Z)=1THENH(Z)=

A(Z+4):GOT0300
290 H(Z) =0
300 NEXT Z
310 FOR Z=1 TO 4:IF B(Z+ 4)=1 THEN

H(Z+ 4) = A(Z+ 4):GOTO 330
320 H(Z + 4) = 0
330 NEXT Z
340 GOTO 90
350 1$="":PRINT "Agagggggggggg

ggligggigglgigigggaggg
gggggggggg CIDE1111000
INPUT NUMBER? (0-255):
❑❑❑❑ 111111";

360 FOR Z=1 TO 3
370 GET J$:PRINT "* - 111 ❑ II";:IF

J$="" THEN 370
380 IF J$=CHR$(13) THEN 440
390 IF J$=CHR$(20) THEN 350
400 IF ASC(J$) < 48 OR ASC(J$) > 57

THEN 370
410 1$ = I$ +J$:PR1NT J$;:NEXT Z
420 GET J$:IF J$=CHR$(20) THEN 350
430 IF J$ < >CHR$(13) THEN 420
440 IF VAL(I$) <0 OR VAL(I$) > 255

THEN 350
450 PRINT:PRINT "0 El 	CI El ❑

O DEIDD DEDD0000
❑ ❑❑❑❑❑❑❑❑❑❑❑❑
❑ ❑❑❑❑❑❑❑ ";

460 A= VAL(3):GOTO 240

10 PRINT"ID"CHR$(8)
20 FOR Z=1 TO 8:READ A(Z):NEXT:DATA

128,64,32,16,8,4,2,1
30 K$="0123456789ABCDEF":POKE 650,

255:POKE 36879,8
40 PRINT 1§000001111

BIN,DEC,HEX"
50 PRINT"OODOCA 	

60 PRINT "ggggi3BINARYL:"
70 PRINT " gg gg gg D ECI MAL L :"
80 PRINT " gg gg gg HEXADECIMALL:"
90 PRINT " gg gg gg gg ggL":v$ =

"":FOR Z=1 TO 8:V$=V$+STR$

(B(Z)):NEXTZ
100 PRINT LEFTS(V$,8)" ❑ ❑ ❑ "

R1GHT$(V$,8)
110 PRINT "gigg":V$ = "":FORZ= 1T08
120 V$= VS+ LEFT$("+"± RIGHTS

(STR$(D(Z)),LEN(STR$(D(Z))) —1)
+" ❑ 0171",4):NEXT Z

130 PRINT MID$(V$,1,15):PRINTMID$
(V$,17,16)"11 =DODD/111111V

140 PRINT D(1) + D(2) + D(3) + D(4) + D(5)
+ D(6) + D(7) + D(8)

150 PRINT "gg":vs="":FORZ=1T08
160 V$ = V$ +" + " + R1GHT$(STR$

(H(Z)),1):NEXT Z
170 XIS= M1D$(K$,H(1) + H(2) +1-1(3)

+ H(4) +1,1):X2$= MID$(K$,H(5)
+ H(6) + H(7) + H(8)+1,1)

180 PRINT LEFTS(V$,8):"= g"xi s;
"op"R1GHT$(V$,8)"= 1"X2$

190 PRINT"gg AHEX TOTAL :0 ❑ ❑ ❑

0 E1111 1111 IIM";
Xl$+ X2$

200 GETA$:1FA$=""THEN200
210 POKE 198,0:1FA$= " 0"THENA = A +1:

IFA > 255THENA = 0
220 1FA$ = "B"THENA= A— 1:IFA <OTHEN

A=255
230 IF A$ < > "0"ANDA$ < >"B"THEN350
240 AA = A
250 FORZ=1T08:1FA(Z)< =AATHENB(Z)

=1:(DZ)=A(Z):AA= AA— A(Z):G0T0270
260 B(Z)=0:D(Z)=0
270 NEXT

280 FORZ=1T04:IFB(Z) =1THENH(Z)= A
(Z + 4):GOT0300

290 H(Z)= 0
300 NEXTZ
310 FORZ = 1T04:IFB(Z+ 4) = 1THENH

(Z+ 4) = A(Z+ 4):G0T0330
320 H(Z+4)= 0
330 NEXTZ
340 GOT090
350 1$ = "":PRINT"bi gg ga

Agggggigggggigggigigg
gggggggggggiNpuT NUMBER?A
0-255) M>1117

360 FORZ=1T03
370 GETJ$:PRINT" . 11 11";:IF J$=`'

THEN370
380 1FJ$=CHR$(13)THEN440
390 1FJ$=CHR$(20)THEN350
400 1FASC(J$) < 48 ORASC(J$)> 57

THEN370
410 1$ =1$ + 4:PRINTA:

NEXTZ
420 GETJ$:1FJ$= CH R$ (29) TH EN350
430 1FJ$ < > CHR$(13)THEN420
440 IFVAL(I$) < OORVAL(1$) > 255

THEN350
450 PRINT:PRINTI] DODD

❑❑❑❑❑❑❑❑❑❑❑
❑ O ❑❑❑❑❑❑❑❑❑
❑❑❑ ";

460 A= VAL(1$):G0T0240

This is how the Bin, Dec, Hex
program looks on the Spectrum.
The screen layout is not too
different on the other machines.
It is now easy to see how the
three number systems work.
When you RUN the program all
three lines are set to zero. Press
B, for back, and the Binary line
will fill up with Is. Underneath,
the decimal line will fill up with
the powers of 2. From right to
left, you get 1—which is 2 0; 2—
which is 2'; 4—which is 2 2 ; and so
on. The hex line works in the
same way, only the two hex digits
are computed independently.

20 CLSO
30 PRINT@11, "I:IM,DEC,BM";

PRINT@68,"BINARY";
50 PRINT@196,"DECI MAL";
50 PRINT@ 323,"H EXADEC1MAL";
70 PRINT@355," + 	+ 	+

0 0 = ";
30 PRINT@371," +ED + 	+

0 0 ❑ = 0";
)0 FORJ = 1T015:POKE1040 + 32*J,

175: NEXT
100 PRINT@450, " EX NUMBE•i=

0000 ❑ ";
110 PRINT@227,"+ ❑❑❑ + ❑❑❑ +

111111111111+ ❑❑❑ + ❑❑❑ +
EDE+ "

20 GOT0170
30 1N$= 1NKEY$:IFIN$ = `"' THEN130
140 IFIN$=" ❑ "THENNO=N0+1:

NO = NO AND 255:GOT0170
150 1F1N$ = "B" THENNO = NO —1:NO = NO

AND 255:GOT0170
160 GOSUB370
170 GOSUB190:GOSUB270
180 GOT0130
190 FORX = 7T00 STEP-1
200 IF(NO AND 2 T X) THENN =1

ELSEN = 0
210 PRINT@125 — X*4,N;
220 1FN =1 THENN = INT(2 T x):

N$ = STR$(N):N$ = MID$(N$,2,
LEN(N$) —1) ELSEN$ = RIG HT$
(" E O 0", LEN(STR$(2 T x)) — 1)

230 PRINT@255 — X*4 — LEN (N$),N$;
240 NEXT
250 PRINT@279," E =171";M1D$

(STR$(NO) + "ED ",2,3);
260 RETURN
270 FORX = 7 TO 4 STEP — 1
280 PRINT@374 — X*3,STR$((NO

AND 2 T X)/16);
290 NEXT
300 PRINT5367, HEX$(N0/16);
310 FORX = 3T00 STEP — 1
320 PR1NT@378 — X*3,STR$(NO AND 2 T x);
330 NEXT
340 PRINT@383,HEX$(NO AND 15);
350 POKE1488,PEEK(1391):POKE

1489,PEEK(1407)
360 RETURN
370 NU$="":PR1NT@439,"?";
380 1N$= INKEY$:1F(IN$<"0"ORIN$ >

"9") AND1N$ < > CHR$(13)THEN
GOTO 380

390 1F1N$=CHR$(13) THENNO = VAL
(NU$):1FNO> 255 THEN370
ELSEPRINT@439,STR1NG$(5,
CHR$(128));:RETURN

400 1F1N$ < > CHR$(13) ANDLEN

(NU$) > 2 THEN380
410 NU$ = NU$ + 1N$:PRINT@441,

MIDS(NUS + " ❑ ❑ ❑ ",1,3);:GOT0380

Once you've keyed in the program for your
machine and RUN it, you will find that the
binary, decimal and hex numbers are all set at
zero. If you push the space bar a 1 will clock
up in each base. Keep pushing and the
computer will keep counting, adding 1 to each
total at a time. Note that the decimal equiva-
lent is computed by adding the value of each
place that has a 1 in it in the binary.

The hex is computed by doing exactly the
same thing, except that it takes four binary
digits at a time.

Pressing the B key will subtract a 1 from
each of the numbers and run the program
backwards.

For the Spectrum and Commodores you
can SAVE this program and use it to convert
decimal numbers into hex numbers at any
time. The quick way to do this conversion is
to press any key on the keyboard except the
space bar or B. A question mark will be
displayed on the screen. Feed in any decimal
number less than 255, press 'ENTER I or
RETURN , and the equivalent in binary and hex
will be displayed.

You will note that the maximum number
that can be represented by an eight-bit byte in
binary is 11111111. This is 255 in decimal,
and FF (the maximum two-digit number) in
hex. Any number stored in a byte of your
computer memory can be represented by a
two-digit hex number. And machine code is
made up entirely of these two-digit hex
numbers.

LARGER NUMBERS
Your computer deals with numbers larger than
255 simply by breaking them in two parts and
putting them into two adjacent memory loc-
ations. This will allow you to store any number
up to FFFF in hex, or 65,535 in decimal.
FFFF is an important number in home com-
puters as it is the maximum number of
addressable memory locations.

Larger numbers still can be stored by
breaking the number into three or four hexa-
decimal bytes and storing them in succeeding
memory locations. Which way round the bytes
are stored is a matter of convention. The
Sinclair, Commodore and Acorn computers
store the lowest value byte in the lowest
memory location and the highest in the high-
est. The Dragon and the Tandy store them the
other way round.

But how does hex represent negative num-
bers? That will be dealt with in the next part of
this article.

E

	

35, 36 	ENDPROC, Acorn

	

26-32 	also see procedures
Errors, causes of

136-143
46-53, 75-79

124-128
67

66-67
66-67, 92

68-69

F
Family finance program
Field
File, SAVEing/LOADing a
Filing system program
FLASH, Spectrum
FOR...NEXT loops

GOTO
Graph-drawing program

	

112-113 	Acorn

	

25 	Graphics, characters
creating and moving UDGs

	

108 	drawing on the screen

	

26-27 	drawing pictures

	

86-91 	fire-breathing dragon
frog UDG

	

14, 27
	

instant embroidery

	

10
	

low resolution

	

69-73 	painting by numbers

	

87-90 	sunset pattern

	

66
	

tank UDG

	

94 	using PLOT, DRAW, CIRCLE,

	

118-123
	

LINE, PAINT
7

18-21, 60-62

	

64 	N.

	

38-45 	Nested loop

	

8-15 	definition and use of

	

132-133 	NEW

	

107-109 	Nonary numbers

	

80-83 	Null strings

	

10-15 	Number bases
21

19 0
26-32

	

20 	ON... GOSUB

	

10-15 	ON ... GOTO
Opcodes

84-91 	Operands
OR

123

104-109
154-155
107-109

67
8-14, 40-45

110
38, 42

114
33-37

89
90

-17
152-153

105
85-91

H
Hexadecimal
HIRES, Commodore
Hobbies file
House, drawing a

Acorn
Commodore

38, 42, 45, 156-160
87

46-53, 75-79

107-108
108-109

3, 33-37
37

36, 54
86

28-29, 103, 134-135
54-55, 132-135

3-5, 117-122, 129-135
130-131

2-3

P
PAINT, Dragon
PAPER, Spectrum
Parameters
Password program
PAUSE

Commodore
Spectrum

PEEK
Peripherals, cassettes
Pixel
PLAY, Dragon
PLOT
PMODE, Dragon
POINT, Acorn
POKE

Commmodore
Dragon
Spectrum

IF...THEN statements
IF ... THEN ...ELSE
IF ... THEN ... GOTO
INK, Spectrum
INKEY, Acorn
INKEYS
INPUT
INPUT prompts
INT, Commodore, Spectrum

K
64 	Keypress, detection of

36
	

L
Languages, computer

see Assembly language:
BASIC: Machine Code -

Letter writing program
LINE, Dragon
Line numbers
LOAD command
Logical operators
LOW COL, Commodore
Lower case letters, Dragon, Tandy

M

136-143
46, 75

77
46-53, 75-79

86
16-21

Machine code programming
advantages of
binary numbers
drawing a dragon with
games graphics
hexadecimal
low level languages
nonary numbers
number bases
speeding up games routines

Maze programs
MIDS, Acorn

Commodore
Minefield game
MODE, Acorn
MOVE, Acorn
Movement
MULTI, Commodore

65-67
66

113-116
80-83
38-45

156-160
65-67

111-112
110-116

8-15
68-75

71
101-102

97-99
28

71,88-90
26-32,59

87

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

144-151
26-32

155
54-55, 57-59

55-58
36

3-5
68-74

97-103
54-59
8-15

69-73, 97-103
144-151

89
55, 132-134

GETS, Acorn 	55, 57, 58, 103, 132-134
GETS, Commodore 64, Vic 20 	135
GOSUB 	 62-64

65

152-155

	

16-21 	Games

	

33-37 	aliens and missiles
animation
arrays for games
controlling movement
firing missiles
fruit machine
guessing
maze game
minefield
moving characters
routines
scoring and timing
space station game

GCOL, Acorn

	

108 	GET, Commodore 64

A
AND
Animation
Applications

family finance
hobbies' files
letter writer

Assembler, definition of
Assembly language
Assignment statement
ATTR, Spectrum

B
BASIC
BASIC programming

arrays
the FOR ... NEXT loop
decision making
how to PLOT, PAINT,
DRAW, LINE
	

84-91
inputting information
	

129-135
programmer's road signs

	
60-64

random numbers
	

2-7
READ and DATA
	

104-109
screen displays
	

117-123
variables
	

92-96
Binary 	 38, 41, 44, 45, 113-116
Bit, definition of
	

113
BORDER, Spectrum
	

86
Breaking out of a program

	
4

Bridge, drawing a
Spectrum

Byte, definition of
	

114

C
Calculator program for all

number bases
Cassette recorders, choice of
Castle, drawing a

Dragon, Tandy
CHRS, Dragon
CIRCLE
CLEAR

Dragon
Spectrum

Clock, internal
COLOUR
Compiling programs
Control variables
Cricket average program
Cursor, definition of

control codes, Commodore 64
Vic 20

D
DATA

for arrays
for graphics
machine code
statements

Decimal numbers
conversion from binary
converting fractions into binary

Decision making
Default colours

Acorn
Dragon

Delays in programs
DIMensioning an array
Directory program
DRAW

R
RAM
	

25, 44, 46
Random numbers
	

2-7
RANDOMIZE
	

2
READ
	

40-44, 104-109
REC, Commodore
	

87
Records
	

75-77

REPEAT... UNTIL, Acorn
	

36
Resolution, high and low

	
84

RETURN
	

62
RESTORE
	

106-107
RIGHTS, Commodore
	

101, 102
RND function
	

2-7
ROM graphics
	

107-109
Acorn
	

28-29
Commodore
	

31, 37, 44, 74
Dragon
	

26-27
Spectrum
	

31-32
RUN/STOP, Commodore

	
7

RVS, Commodore
	

31

S
SAVE 	 22-25
Scoring 	 97, 100-101

high score 	 100
SCREEN, Dragon 	 40, 90
Screen drawing program 	132-133

	

19
	

Screen formatting 	 117-123

	

10-15, 23
	

Simons' BASIC, Commodore 	87-88
111
	

Sprites, Commodore 	 14-15

	

96
	

STEP 	 17, 21

	

110-116
	

STOP, Spectrum 	 4, 64
Spaces, using, Commodore 64, Vic 20 	122

String variables 	 4, 95-96

STRINGS

	

64
	

Acorn 	 98

	

62
	

Dragon 	 98

	

67
	

Subroutines 	 62-63

	

35
	

Symbols, arithmetic 	 6
35-36

T
TAB
	

117-122

	

91 	Tables, multiplication
	

5-7

	

86 	Teletext graphics, BBC
	

28-29

	

64 	Terminating numbers
	

34

	

133 	Timing
	

97, 101-103

88
101, 108
59, 101 UDG (User defined graphics) 8-15, 40-44

	

22-25 	grids for 	 8-11

	

84 	DATA for 	 45

	

73 	creating your own 	 38-45
88-89

90
71

VAL, Commodore 	 101

	

15, 99, 108-109 	Variables 	 3-5, 92-96, 104-108

	

13, 40, 101 	VDU commands, Acorn 	28-29, 70, 99

	

101 	Verifying saved programs 	24-25

124-128
88-91

7
22-25
35-37

87
142

Positioning text 	 117-123
PRINT 	 26-32, 117-123

	

5 4 5 5 	PRINT AT
Dragon 	 26-27
Spectrum 	 8-9, 31-32

PRINT TAB

	

65 	Acorn 	 11, 28
Commodore 	 30

PROCedures, Acorn 	 64
PSET, Dragon 	 13, 90-91
Punctuation, in PRINT statements 119-123

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

–.I Improve your ability to draw
COMPUTER PICTURES by learning
about some of the more subtle uses for
your computer's BASIC graphics
commands

51 Zap ... pow ... crash. EXPLOSIONS
are a common feature of many arcade-
type games. So here's how you can create
convincing visual effects to add to your
games—plus a couple of new routines

I Get one step nearer to understanding
the mysteries of the numbers which
make up machine code programs by
looking at how the computer handles
NEGATIVE NUMBERS

–/ What do people mean when they talk
about an 'elegant' or well-written
program? Find out with your own guide
to writing properly STRUCTURED
PROGRAMS

Plus, for Commodore users, one of an
occasional series on special features of
individual machines. In this article , we
look at the sprite graphics facility

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

